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Abstract

The present study sought to determine whether finding new
solutions to problems after changing the initial represen-
tation of them (“insightful” solutions), create a set for fa-
miliar solutions to similar problems. To this end, problem
solvers worked on a number of set problems that required
them to repeatedly carry out new moves that were only
available after they had changed their initial representation
of the problem. The results demonstrated that this manipu-
lation made it harder to solve similar problems having fa-
miliar solutions. This effect was especially strong, when
the same new move was carried out repeatedly. This might
suggest that newly discovered moves are “prioritized” rela-
tive to familiar moves. Such a prioritizing might serve to
enhance the availability of new solutions to problems.

Insight and Set

Some problems are difficult because they require the prob-
lem solver to find the right sequence of steps in a vast space
of alternative step sequences (Newell & Simon, 1972). The
main resources for solving such problems are search heuris-
tics and memories of prior problem solving episodes, both
of which help constrain the search. In contrast, other prob-
lems, traditionally called insight problems (Duncker, 1945;
Wertheimer, 1959), quickly generate the impression that
they are unsolvable (Ohlsson, 1992). Instead of floundering
in a myriad of possibilities, problem solvers cannot think of
any useful step to take. Similar phenomena are observed in
experiments that address set effects (Lovett & Anderson,
1996; Luchins & Luchins, 1959; Ohlsson, 1992). Here,
participants often have difficulties finding the solution to
simple problems, after having solved a number of problems
with a more complex sequence of moves. Despite this simi-
larity, different principles have been formulated to explain
set effects and insight.

The study reported in this paper is part of a larger research
project that investigates whether different cognitive proc-
esses need to be postulated to explain insight and set, or
whether the same processes underlie both phenomena (e.g.
Smith, 1995). Our main interest in the current study was
whether newly discovered moves that follow a change in the
problem representation create set effects for familiar solu-
tions to similar problems. Such a “prioritizing” of new
moves could provide a principle to explain the strong trans-
fer effects observed in insight problem solving (Knoblich,

Ohlsson, Haider, & Rhenius, 1999). We start with a short
review of some prior research on set and insight.

Set

In their classical water-jar studies Luchins and Luchins
(1959) typically compared a set group and a control group.
The participants in the set group received a number of prob-
lems that could only be solved by repeatedly carrying out the
same sequence of two moves, before solving a problem that
could either be solved by carrying out the more complex
two-step sequence or a simple single move. The control
group received the same ambiguous problem after solving
unrelated problems or a number of ambiguous problems.
Almost all of the participants in the set group continued to
use the more complex procedure, despite the availability of a
much simpler solution. Participants in the control group
almost always found the simple solution. Additionally, par-
ticipants in the set group were often unable to solve prob-
lems that could only be solved by the simple move. Luchins
& Luchins (1959) explained this effect in Gestalt terms:
they claimed that the set group had been fixated on the more
complex method.

Modern cognitive accounts postulate that set effects are
due to the repeated activation of the same solution procedure
(Lovett & Anderson, 1996; Ohlsson, 1992) or the same
knowledge element in declarative memory (Smith, 1995).
Lovett and Anderson (1996) investigated an analog of the
water jug problems, and convincingly demonstrated that the
repeated activation of the same procedure in prior learning
history, and the activation of the same procedure within the
local problem-solving context, resulted in additive set ef-
fects. It is less clear whether the repeated activation of the
same knowledge elements in declarative memory contributes
to set effects in problem solving. Until now, such effects
have not been empirically demonstrated.

Insight

Most current theories of insight problem solving rest on
the assumption that some problems cause impasses because
they deceive the problem solver into constructing an incom-
plete or overly constrained problem representation that does
not include the solution (Kaplan & Simon, 1990; Knoblich,
Ohlsson, Haider, & Rhenius, 1999; MacGregor, Ormerod,
& Chronicle, 2001; Ohlsson, 1992). Impasses are encoun-
tered after an initial phase in which the procedures activated
by the initial representation have been applied to the prob-



lem without success (Knoblich, Ohlsson, & Raney, 2001;
Ohlsson, 1992). During impasses no further ideas about
how to proceed come to mind. Feeling-of-knowing judg-
ments show that problem solvers do not feel that they are
approaching the solution until the moment immediately
before it is attained (Metcalfe & Wiebe, 1987).

If the impasse persists, the problem solver will eventually
have to give up and declare failure. To resolve the impasse,
the problem solver must revise his or her biased initial rep-
resentation of the problem. The new representation might
change the problem space by activating previously dormant
knowledge (procedures, rules, etc.) thus allowing the prob-
lem solver to continue. In past work we have proposed two
principles for when impasses are encountered and how they
are resolved (Knoblich et al., 1999; 2001; Ohlsson, 1992).

The first principle is the retrieval and relaxation of con-
straints on the goal representation. Faced with an unfamiliar
problem, the problem solver will recall prior knowledge of
similar problems encountered in the past, including con-
straints on the goal representation. These constraints may
not be adaptive vis-a-vis the unfamiliar problem. If not, the
space of options will not contain any solution to the current
problem. Impasses caused by an overly constrained solution
space can be broken, by relaxing the inappropriate con-
straints. The second principle is chunk retrieval and chunk
decomposition. Familiarity with a class of objects leads to
the creation of patterns that capture recurring constellations
of features, a process generally referred to as chunking (cf.
Chase & Ericsson, 1973). When faced with an unfamiliar
task, the problem solver will automatically recognize in-
stances of familiar chunks in the environment. If the avail-
able chunk repertoire does not parse the problem situation in
a way that allows finding the solution, an impasse results.
Such impasses can be broken, by decomposing the inappro-
priate chunks into their component features.

Does Insight Create Set?

The present experiment addressed the question of whether
the repeated solution of problems that require the problem
solver to change the goal representation by relaxing inap-
propriate constraints, can affect the solution of problems
that can be solved with moves activated by the initial prob-
lem representation. We hypothesized that there might be a
set effect for new moves that results from a prioritization of
new procedures that were discovered after having changed the
problem representation. We assessed this effect by compar-
ing problem solvers who repeatedly solved problems that
needed constraints in the goal representation to be relaxed
with a control group in which unrelated problems were
solved (anagrams).

We used the task domain of matchstick arithmetic for our
study (Knoblich et al., 1999; 2001; Knoblich & Warten-
berg, 1998). Each matchstick arithmetic problem consists of
an incorrect arithmetic expression written with Roman nu-
merals and with the operators ”+” and ”-” and the “=" sign;
in the following, we shall let the term “operator” include the
equal sign. Numerals and operators are constructed out of
matchsticks. The task is to move exactly one stick so as to
change a false expression into a true one, consisting only of
Roman numerals and the arithmetic operators.

Our earlier studies indicate that matchstick arithmetic
problems activate prior knowledge of standard arithmetic.
Specifically, arithmetic operators are represented as constants
and values are represented as variable, in the initial goal rep-
resentation. Thus, the only moves that will be initially con-
sidered are those that transform the values. We refer to prob-
lems that can be solved by such moves as Type A problems
(see first row of Table 2 for an example). Other problems
can only be solved, when arithmetic operators are trans-
formed, as for instance problems of Type C and D (see Table
1). In order to solve these types of problems one needs to
relax the constraint on the goal representation that arithmetic
operators are invariant. Our hypothesis that new moves dis-
covered after changing the goal representation will create set
effects for familiar moves, translates into the prediction that
repeatedly solving Type C or D problems will make it gen-
erally harder to solve Type A problems.

To test the more specific hypothesis that this type of set
effect stems from the repeated activation of the same move,
we looked at two different set-groups (see Table 1). In the
same-move group, the problem solvers repeatedly solved
problems that required them to move a stick between the
equal-operator and the minus-operator (Type C), that is, to
carry out exactly the same move, before solving the Type A
problem that could be solved with a familiar move. In the
same-goal group, the problem solvers repeatedly solved
problems that required them to manipulate the arithmetic
operators in three different ways (Type C, D, and T, see
right column in Table 1). If set effects are due to the repeated
activation of the same move they should be stronger in the
same-move group.

In addition, we assessed how the different set manipula-
tions affected the solution of Type B problems in which a
stick needs to be moved between a value and an arithmetic
operator (see Table 2, second row). If set effects generalize to
all moves that manipulate values, the solution of Type B
problems should become more difficult than in the control
group. If manipulating operators changes the goal represen-
tation in a way that activates a variety of new moves that
involve a manipulation of arithmetic operators, the solution
of Type B problems should become easier. Such positive
transfer effects might be stronger in the same-goal group,
because manipulating operators in different ways may
change the goal representation in a more persistent manner.

Futhermore, we investigated whether creating an “operator
set” also influences the solution of problems that require
changing the problem representation in a different way,
namely the decomposition of chunks that are tightly bound,
as in problems of Type X (see Table 2, third row). In this
problem one only needs to manipulate values. They are very
difficult, nevertheless, because the chunks involved are espe-
cially hard to decompose. If the hypothesized operator set
specifically affects finding other unfamiliar moves, the set
effects should be especially strong for problems of Type X.

Finally, we also analyzed whether the solution of each
target problem made it harder to solve the set problem that
followed immediately afterwards. If the solution of a target
problem drives down the activation of a specific procedure
that has been repeatedly activated such effects should be
more pronounced in the same-move group.



Method
Participants

The 108 paid participants (38 male), were recruited by adver-
tising at the University of Munich campus and in local
newspapers and received 7 . They ranged in age from 17 to
58 years. We selected only participants, who reported to be
familiar with Roman numerals. Participants were randomly
assigned to the same-move, the same-goal, or the control

group.
Material

The material consisted of matchstick arithmetic problems,
all of which could be solved by moving a single matchstick
in order to transform a false arithmetic expression into a
correct one. Participants in all groups solved three target
problems (one of type A, B, and X, respectively; the two
sets of target problems used in the experiment are displayed
in Table 2).

Participants in both experimental conditions additionally
worked on 21 set problems (a block of set problems preceded
each target problem). Table 1 displays a list of set problems
a participant in each experimental group might have worked
on before solving a target problem.

Table 1: Example for five consecutive set problems (SP) in
each experimental group.

Experimental group

Same-move Same-goal

SP1 TypeC: IV=1I-1I Type C: VIII = VI-1I

Solution: IV-II=1I Solution: VII-VI=1I
SP2 Type C: IX=VII-1I Type D: Il =III+III
Solution: IX-VII=1I Solution: I = I = 11
SP3 TypeC: VIII=VI-II TypeT: M=II=V
Solution:  VIII - VI=1I Solution: m+mI=v
SP4 TypeC: X=VII-II TypeC: VII=V-1I
Solution: X - VIII =11 Solution: VII-V=1
SP5 Type C: XII=VI-VI Type D: VI=VI+ VI
Solution:  XIT- VI = VI Solution: VI=VI=VI

In the same-move group, the participants solved set prob-
lems that could only be solved by moving a stick between
the equal and the minus sign (Type C problems, see first
column of Table 1). The same-goal group worked on set
problems that could be solved by one of three different trans-
formations of operators (Type C, D, and T problems, see
second column of Table 1). In Type T problems one needs
to transform a tautology into a regular arithmetic expres-
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sion, e.g. by turning the “="into a “+”. A randomization
procedure ensured that each of the three different moves oc-
curred roughly equally often in each block of set problems.
The control group solved anagrams instead of the set prob-
lems, for an amount of time that had been determined as the
range of solution times for solving a block of set problems
in a pilot study (six to ten minutes).

Table 2: The two sets of target problems used in the ex-

periment.

Target set 1 Target set 2
Type A IX=X-1II Vi=VII-1V
Solution IX=XI-1I IV = VIII - IV
Type B XI=VII-1IV VII =1II - III
Solution XI=VII + 1V VI =111 + III
Type X XI=X-1V IX=X-VI
Solution Vi=X-1V IV=X-VI
Procedure

Upon entering the lab, all participants received an instruc-
tion about how to solve matchstick arithmetic problems.
The instruction stressed (1) that all problems could be solved
by moving one stick, (2) that sticks could not be removed,
and (3) that the only valid symbols were Roman numerals
and the arithmetic operators “+”, “-*, and “=". Participants
in the control group were also instructed about solving ana-
gram problems and they were told that, while they solved
anagrams, a matchstick arithmetic problem would appear
once in a while.

During the experiment participants were seated in front of
a computer screen. The display consisted of two main areas.
The upper area presented the problem, the lower area was
used to type in solutions to the problem. In the beginning
of each trial a problem appeared. As soon as participants
thought they had found a solution, they entered it, using six
keys on the keyboards labeled “1”, “V”, “X”, “+”, “-“  and
“=". They received feedback about whether the solution was
correct. In the latter case, they continued to search for a solu-
tion until they reached the upper time limit. This limit was
three minutes for set problems and six minutes for target
problems. If a set problem was not solved within the time
limit the solution was given. The same display was used to
display anagrams in the control group. Participants in this
group used the common keyboard mapping for typing in the
solution to the anagrams.

A block of set problems preceded each target problem.
The number of set problems in each block varied between
five and eight, in order to avoid anticipations of the serial
position at which a target problem might appear. The last
target problem was followed by a further set problem. The
order of target problems was randomized. The set problems
were randomly drawn from a large sample of problems of
type C, D, and T.



Results

We analyzed two dependent variables. The first was the
frequency of solutions for each target problem in 90 s inter-
vals. The second was the solution time for set problems.

Solution frequency for target problems

We conducted pair-wise ’-tests to compare the frequency
of solution across five different 90s intervals. Participants in
the control group were better able to manipulate values in
target problems of Type A than both experimental groups
(see Figure 1). Accordingly, there were highly significant
differences between the control group, and the same-move
group, %* (4, 36) = 31.95; p < .001, and the control group
and the same-goal group * (4, 36) = 18.23; p < .01. Thus,
solving operator problems generally created a set for solving
value problems. A further y>-test confirmed that there also
was a highly significant difference between the two experi-
mental groups %> (4, 36) = 18.99; p < .001. The set-effect
for the solution of Type A problems was stronger in the
same-move group.

Figure 1: Cumulative frequency of solutions for target
problems of Type A across 90 s intervals, for different ex-
perimental groups.
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The pattern for target problems of Type B was very differ-
ent (see Figure 2). Here, the same-goal group performed
much better than the same-move group and the control
group. Solving different types of operator problems actually
ameliorated performance on Type B problems. Accordingly,
there was no significant effect between the same-move group
and the controls, but a highly significant difference between
the same-goal group and the control group x*> (4, 36) =

30.83; p < .001. Additionally there was a highly significant
difference between the same-goal group and the same-move
group, % (4, 36) = 34.13; p < .001. This result indicates
that solving set problems by manipulating arithmetic opera-
tors in different ways led to a positive transfer effect for tar-
get problems of Type B in the same-goal group.

Figure 2: Cumulative frequency of solutions for target
problems of Type B across 90 s intervals, for different ex-
perimental groups.
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Figure 3: Cumulative frequency of solutions for target
problems of Type X across 90 s intervals, for different ex-
perimental groups.
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Participants in the control group solved more problems that
required the decomposition of a tight chunk (Type X), espe-
cially in later intervals (see Figure 3). However, a y’-test
revealed no significant difference between the same-move
group and the controls (p > .10). The difference between the
same-goal group and the controls just fell short of reaching
significance, %* (4, 36) = 9.24; p = .055. The lack of a sig-
nificant effect is probably due to a floor effect (the low solu-
tion rates make it harder to detect significant effects). There
was also no significant difference between the experimental
groups (p > .10) for Type X problems.

Solution time for set problems

In the next step, we analyzed whether participants in the two
experimental groups became faster for consecutive problems
within each block of set problems. This analysis provides a
check for the set manipulation. Only the first five trials were
included in the analysis. Solution times for problems that
were not solved (11.6%) within the time limit were replaced
with the maximal solution time of 180 s.

Figure 4: Solution time (in s) for set problems across
consecutive trials of a set block, for the two experimental

groups.
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The solution time generally decreased across consecutive set
problems (see Figure 4). The decrease was more pronounced
in the same-move group than in the same-goal group. A
mixed ANOVA with the between factor Group (same move
and same goal) and the within factor Position (1, 2, 3, 4,
and 5) revealed no significant main effect for Group F(1, 70)
= .34; p > .10, but a significant main effect for Position
F(4, 280) = 28.64; p < .001, and a significant interaction
between the two factors F(4, 280) = 3.90; p < .01.

In the next step, we analyzed the solution times for set prob-
lems that immediately preceded and followed a target prob-
lem. This analysis allows us to assess to which extent the
solution of a target problem slowed down the solution of the
next set problem.

Figure 5: Cumulative frequency of solutions for target
problems of Type X across 90 s intervals for the same-move
group (top) and the same-goal group (bottom).
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The upper panel in Figure 5 demonstrates that in the same-
move group solving a target problem generally slowed down
the solution of the following set problem. The lower panel
in Figure 5 illustrates that the pattern was different in the
same-goal group. Although the pattern for Type X looks
similar to the one for the same-move group, there was no
substantial slow-down after solving target problems of Type
A and B. Only the result for Type X is similar to same-
move group.

We conducted two 2 x 3 ANOVAs with the within factors
Problem type (A, B, and X) and the factor Target set (before



and after target), one for each experimental group. There was
a significant main effect for Target set in the same-move
group, F(1, 35) = 19.1; p < .001. All other main effects and
interactions were not significant. Thus, only in the same-
move group, the solution of a target problem significantly
slowed down the solution of the following set problem.

Discussion

The results of the present experiment provide clear evi-
dence that the repeated solution of problems that require the
problem solver to change the goal representation by relaxing
inappropriate constraints, can affect the solution of problems
that can be solved with moves activated by the initial prob-
lem representation. The result that such effects were
stronger, when the same new move was carried out over and
over again, suggest that these set effects are due to the re-
peated activation of a solution procedure that became avail-
able after a change in the problem representation, and not to
the change in the problem representation per se. In this case
the set effects should have been equally strong in the same-
goal group. A further important result was that only the
same-goal group showed positive transfer effects for the
Type B problem that required manipulating a value and an
arithmetic operator, at the same time. This result suggests
that a persistent change in the goal representation that acti-
vates a variety of new moves might only take place if differ-
ent procedures activated by this representation lead to suc-
cess. The pattern for Type X problem was somewhat am-
biguous, but it provide a first hint that set effects might also
make it harder to discover new solutions to problems.

The results of the present experiment alone do not allow
us to conclude that the set effects are specific to moves that
follow a change in the representation of a problem. After all,
the same effects could be present after repeatedly carrying out
familiar moves. The result that the solution of the first set
problem solved after a target problem was somewhat slowed
down seems to support this assumption. However, this ef-
fect was quite small (about 20s solution time) and only pre-
sent in the same-move group. In addition, we have also con-
ducted another experiment that we cannot report here because
of space constraints (Oellinger & Knoblich, in prep.). In
this experiment, we tried to create an additional set for un-
familiar problems by having problem solvers repeatedly
solve familiar problems before they attempted to solve un-
familiar target problems that required a change in the prob-
lem representation. There was no indication for additional set
effects in this experiment.

Together, the results of these experiments suggest that
moves that are discovered after a change in the problem rep-
resentation create specific set effects for familiar moves. Our
preferred explanation for this result is that these moves are
prioritized relative to familiar moves in order to increase
their availability in the solution of subsequent problems.
Such a prioritizing might also explain the strong within-
domain transfer that we have observed in earlier studies.
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