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Certain models of spoken-language processing, like those for many
other perceptual and cognitive processes, posit continuous uptake
of sensory input and dynamic competition between simulta-
neously active representations. Here, we provide compelling evi-
dence for this continuity assumption by using a continuous re-
sponse, hand movements, to track the temporal dynamics of lexical
activations during real-time spoken-word recognition in a visual
context. By recording the streaming x, y coordinates of continuous
goal-directed hand movement in a spoken-language task, online
accrual of acoustic–phonetic input and competition between par-
tially active lexical representations are revealed in the shape of the
movement trajectories. This hand-movement paradigm allows one
to project the internal processing of spoken-word recognition onto
a two-dimensional layout of continuous motor output, providing
a concrete visualization of the attractor dynamics involved in
language processing.

dynamical systems � psycholinguistics � word recognition

Modular stage-based accounts of language processing have
generally assumed that, rather than continuously cascad-

ing partial results of information processing to later stages (1, 2),
the neural subsystems responsible for perception and cognition
each wait until a stable unique representation has been com-
puted before that information is passed on to the next processing
stage (3–5). This kind of discrete stage-based theoretical frame-
work has motivated much of cognitive psychology since its
inception, and it continues to be a guiding force in various
contemporary theories of cognitive processing. However, in the
case of spoken-word recognition, a number of judgment-based
experimental techniques have provided indirect evidence for
partial activation of multiple lexical representations (‘‘cohorts’’)
cascading to later stages of processing even just part of the way
through hearing a word (6, 7). Moreover, recent eye-movement
data have supported a continuously dynamic and highly inter-
active account of the real-time integration of information
sources during spoken-language processing (8, 9). For example,
eye movements to objects with phonologically similar names
(e.g., saccades to a candle when instructed to ‘‘pick up the
candy’’) have been interpreted as evidence for continuous
processing of phonological input and parallel activation of
temporarily consistent lexical representations in monolingual
adults (10, 11), bilingual adults (12), and children (13). Thus, it
appears that neural patterns corresponding to multiple lexical
representations may signal later stages of processing before the
single correct lexical item is identified. However, it is still not
entirely clear whether the activations of these lexical represen-
tations are updated continuously by the acoustic–phonetic input
and constantly cascaded to later stages or whether there are
intermediate noncascading stages in spoken-language compre-
hension.

Completely ruling out discrete-time incremental versions of
the modular stage-based account (4) has proven to be difficult
because there is, in principle, the possibility that the apparent
continuity in recent results may be an artifact of averaging
discontinuous or semicontinuous motor outputs (such as button

presses and saccades). In this work, we recorded a continuous
hand-movement response during comprehension of spoken in-
structions in a visual context, and we show that it provides an
unusually high-fidelity emission of the continuous cognitive
dynamics inherent in real-time spoken-language processing.

Several computational models of spoken-word recognition
assume relatively continuous input and parallel partial activation
of lexical representations (10, 14–17). Corresponding to simu-
lation results from the interactive-activation TRACE model of
speech processing (14), the eye-movement data typically show a
nonlinear rising curve over time for the probability of fixating the
target object (referred to in the speech stream; e.g., ‘‘beaker’’),
and a significant rising-then-falling curve for the probability of
fixating an object whose name has phonological overlap with the
spoken word (e.g., a beetle, or a speaker) (18).

The semicontinuous record of eye position, alternating be-
tween steady fixations of 300–400 ms and fast, ballistic saccades
of 20–40 ms, is a significant improvement over traditional
outcome-based experimental methods that record only accuracy
and reaction time at the end of a trial. Nonetheless, a disadvan-
tage of the eye-movement evidence for parallel partial activation
of lexical alternatives during spoken-word recognition is that it
involves averaging ‘‘categorical’’ data (steady fixations of one
object or another over time) to produce ‘‘continuous’’ functions.
Thus, it can only approximate continuous central tendencies of
group data.

Because saccades are largely ballistic (but cf. ref. 19), the
experimental trials that contribute to evidence that the cohort
lexical item is substantially active are always trials in which the
participant briefly fixated directly on the cohort object at some
point in the trial and then later fixated the target object before
picking it up. In contrast to saccades, many arm movements are
nonballistic and can often be smoothly redirected midflight (20).
Therefore, by recording continuous arm movements in a similar
visual display, one can observe graded effects of a competing
object pulling the movement in its direction even on trials in
which the hand only ever settles on the correct target object.

Experiment
Methods. Forty-two Cornell University undergraduates partici-
pated in the experiment for extra credit in psychology courses.
Participants were presented with color images of two objects on
a screen (one target and one distractor), and a prerecorded
speech file instructed them to click one of them with the mouse.
Objects were presented in the upper left and upper right corners
of the computer screen (e.g., a candle and a candy, in the cohort
condition, or a candle and a jacket, in the control condition).
Eight target objects were used to make 32 trials in which the
distractor object was either a cohort for the target object or a
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phonologically dissimilar control and in which the target object
was either on the left or right side of the display. Participants
were instructed to mouse-click a box in the bottom center of the
screen when they were ready to begin a trial. At this time, the two
object images would appear in the upper left and right, and 500
ms after the onset of the images, a single spoken word (from a
speech file on the computer; mean duration, 532 ms) would
name the target object. [Imposing this asynchrony between
image onset and speech onset grew out of observations from
pilot studies in which simultaneous onset caused participants to
occasionally wait until the entire word was spoken before
beginning their mouse movement. With the spoken word begin-
ning 500 ms after onset of the images, participants usually begin
their mouse movement (straight upward) before the onset of
the spoken word, which gives distinguishing properties in the
acoustic–phonetic input a chance to influence the continuous
motor output midflight.]

The x, y screen coordinates of the computer mouse were
sampled at �36 Hz. At this sampling rate, each trial typically
collected �30–60 data points indicating where in space the
motor output had taken the hand in response to the speech input.
Although eye trackers actually sample eye position at 60, 240, or
even 1,000 Hz, most eye-movement analyses involve a fixation
analysis that, quite sensibly, pools samples during steady fixa-
tions, resulting in two to four fixations per s (8, 9). Thus, although
saccades are generally initiated earlier than skeletal movements,
giving eye-tracking a clear advantage in immediacy, acquiring
30–60 data points per trial from nonballistic hand movements
provides a substantially richer signal of continuous processing
than two to four data points per trial. Moreover, the statistical
distributions of these x, y coordinates at any given time slice tend
to be narrower, as well as more normal (as described below),
than the statistical distributions of categorical object-fixation
data from eye movements.

Results. In the cohort condition (in which the name of the
distractor object shared phonological overlap with the spoken
target word), participants clicked on the incorrect image on 8.9%
of the trials, which was significantly greater (P � 0.001) than the
2.5% error rate in the control condition (in which the name of
the distractor object did not share phonological overlap with the
spoken target word). During debriefing, participants generally
reported that when they made an error they attempted to correct
it by rapidly clicking the target object. These error trials were
excluded from further data analysis.

Not surprisingly, the cohort condition showed longer total
response times (from visual onset to correct mouse click) than
the control condition (1,812 vs. 1,717 ms; P � 0.001). There was
no main effect of condition in time to initiate a movement (335
vs. 357 ms; P � 0.1), because participants typically initiated the
movement before speech onset. This preemptive movement
allowed the speech input to influence motor output while the
hand was in motion. A significant main effect of condition in the
duration of the movement itself (1,477 vs. 1,360 ms; P � 0.001)
provided evidence that the effects of phonological similarity
were indeed taking place while the hand was moving. Moreover,
average movement length on the computer screen was longer in
the cohort condition than in the control condition (30.36 vs.
26.68 cm; P � 0.001).

Fig. 1 shows averaged mouse-movement trajectories, with
durations normalized to 101 time slices (0–100%). Before
averaging, all trajectories were lined up to a common x, y starting
position (0, 0). They were then individually normalized by
resampling the time vector at 101 equally time-spaced values and
computing, by means of linear interpolation, the corresponding
mouse-coordinate values (separately for the x and y coordinate
vectors). Last, pixel coordinates were converted into centimeters
on the computer screen. Note how the average movement

trajectory in the cohort condition travels further upward and
equidistant from the two objects for a longer period than the
trajectory in the control condition. This gravitation of the mouse
movement to a region in between the two objects in the cohort
condition is remarkably consistent with a description of two
nearly equibiased attractors initially pulling the system toward
their shared midpoint, compared with one strong attractor
(control condition) pulling the system toward its own midpoint
(21–23).

In mean trajectories, paired time slices for leftward cohort-
and control-condition trajectories (Fig. 1 A) showed statistically
significant differences in the x coordinate (P � 0.05) contigu-
ously from the 70th to the 81st time slice, indicating a sustained
spatial attraction of the mouse cursor in the direction of the
cohort distractor object. A similar comparison for the rightward
trajectories (Fig. 1B) showed statistically significant differences
contiguously from the ninth to the 92nd time slice. (The more
robust effect for rightward movements may be due to kinematics
of the right arm and positioning of the mouse to the right of the
keyboard.)

As done in eye-tracking studies that plot rising and falling
curves of probability-of-fixation for target and distractor objects
(10, 18), the proximity of the mouse cursor to the target and

Fig. 1. Mean trajectories for the control (F) and cohort (E) conditions when
the target was on the left (A) and right (B) side. Both object images depict
cohort conditions. (A) ‘‘Candle’’ with a candy distractor. (B) ‘‘Picture’’ with a
pickle distractor. The rectangles surrounding the objects indicate regions in
which a mouse click would end the trial. Symbols are plotted every 10
normalized time slices (e.g., at the 10th, 20th, etc., percentile of the mean
movement duration) for this and other figures.
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distractor objects over time can be similarly treated as an
indicator of the activation of the competing lexical representa-
tions. Fig. 2 shows the proportional Euclidean proximity, 1 �
distance�max(distance), to the centers of the target object and
the distractor object over normalized time (averaged across
leftward and rightward movements). During early portions of the
movement trajectory, proximity to the target and distractor are
not significantly different from one another, because the move-
ment is largely in the vertical dimension. In the control condi-
tion, these two proximities diverge significantly from one an-
other at the 43rd normalized time slice, and they continue to be
significantly diverged for the remaining 57% of the movement
duration. In the cohort condition, they do not significantly
diverge until the 76th normalized time slice. Moreover, showing
that the cohort object attracted the movement toward itself,
proximity to the distractor in the cohort condition was signifi-
cantly greater than proximity to the distractor in the control
condition (P � 0.05) all of the way from the fourth to the 93rd
normalized time slices. As evidence that the activation of the
spoken lexical item may reach asymptote less quickly when an
object with a phonologically competing name is visually present,
proximity to the target object in the cohort condition was
significantly lower than proximity to the target object in the
control condition from the 66th to the 91st normalized time
slices.

Recall that mouse movement was initiated, on average, at
�345 ms after visual onset of the objects, and speech onset was
exactly 500 ms after visual onset of the objects. Therefore, by the
time the speech input began, participants were, on average,
already �155 ms into their �1,400-ms mouse-movement trajec-
tory. Therefore, the fact that the divergence between distractor
proximity in the cohort and control conditions is observed as
early as the fourth normalized time step (Fig. 2) indicates that
in a proportion of trials in which movement initiation was later
than average, there was sufficient distinguishing information
in the spoken input to reliably sway the trajectory almost
immediately.

To cement the claim that movement trajectories in the cohort
condition are all statistically deflected toward the competitor
object in a continuously graded fashion, it is necessary to look at
the distribution of these deflections across multiple trials. In
principle, it could be the case that, as with saccadic eye move-

ments, there are some trials in which the competitor object does
not attract the motor output and other trials in which it does.
Such a bimodal distribution could be consistent with a stage-
based account of spoken-word recognition in which an incorrect
interpretation of the spoken word is occasionally briefly instated
in discrete symbolic form (thus triggering a motor output toward
that competitor object), and then quickly replaced by the correct
symbolic lexical form (thus triggering a corrective movement
toward the object being referred to). When averaged, this
hypothetical data pattern would produce mean movement tra-
jectories that could falsely suggest simultaneous partial activa-
tion and competition among multiple lexical representations.

To examine this possibility, we calculated the degree of
curvature (toward the distractor object) among the trajectories
in the cohort and control trials in terms of the area (in pixels)
between each actual trajectory and a straight line connecting its
start and endpoint. (Portions of curvature away from the dis-
tractor object and away from the straight line resulted in negative
area calculations.) With too few trials within a participant to
provide an adequate measure of the unimodality or bimodality
of the distribution of these trajectory deflections, the values for
both cohort and control conditions were together converted into
z scores within a participant and then pooled across participants.
Fig. 3A shows the z distribution for the cohort trials (n � 611;
mean, 0.164; variance, 1.043; kurtosis, 0.76; skewness, 0.658),
looking quite similar to that of the control trials (n � 606; mean,
�0.165; variance, 0.889; kurtosis, 1.75; skewness, 0.861). For the
cohort z distribution, the bimodality coefficient (b) was 0.381,
and for the control z distribution, it was 0.366 (with b � 0.555
being the standard cutoff for multimodality). Note that if
continuous eye movement scan paths sampled at 60� Hz
(instead of fixation analyses) were subjected to corresponding
curvature analyses, there would be a decidedly bimodal pattern
in the distribution. Participants in those studies either fixate the
competitor object or they do not, on any given trial. They do not
make saccades slightly toward the competitor object the way
these mouse-movement trajectories show deflections slightly
toward the competitor object.

In a Kolmogorov–Smirnov test of normality, the cohort z
distribution was not significantly different from a normal dis-
tribution with the same mean and variance, but high kurtosis
(indicating an unusually high proportion of trials near the mean)
did make the test marginally significant (P � 0.054). In such a test
with the control z distribution, the even higher kurtosis caused
it to be significantly different from a normal distribution with the
same mean and variance (P � 0.023). In both cases, the deviation
from normality is due to high kurtosis, meaning that the distri-
butions are even more sharply singly peaked and further from
bimodality than their corresponding normal distributions with
matched mean and variance.

We also z-scored, within each participant, the area under the
trajectory separately for cohort and control trials, and we then
pooled across subjects (see Fig. 3B). With these two z distribu-
tions having the same mean (of zero) and the same variance (of
0.966), the Kolmogorov–Smirnov test can evaluate the difference
between their respective shapes (e.g., skewness, kurtosis, and
multimodality). With no theoretical reason to imbue bimodality
in the control z distribution, quantitative evidence for high
similarity between the control and cohort z distributions would
substantially allay concerns that some hidden bimodal behavior
exists in the cohort condition. When comparing these two z
distributions, the Kolmogorov–Smirnov test produces a P value
� 0.9999.

In sum, three tests cast considerable doubt on the possibility
of the cohort condition being composed of (i) some trials that
behave like control trials (indicating no competing lexical acti-
vation of the cohort item) and (ii) some trials that exhibit
uniquely curved trajectories (consistent with a discrete tempo-

Fig. 2. Proximity of the mouse cursor to target (triangles) and to distractor
(squares) over normalized time in the control condition (filled symbols) and in
the cohort condition (open symbols). Averaged movement trajectories exhibit
a significantly greater proximity to target than to distractor much earlier in the
control condition than in the cohort condition.

Spivey et al. PNAS � July 19, 2005 � vol. 102 � no. 29 � 10395

PS
YC

H
O

LO
G

Y
SE

E
CO

M
M

EN
TA

RY



rary misinterpretation of the spoken word as referring to the
cohort object). The bimodality coefficients rule out bimodality
in the distributions of trajectory curvatures. The Kolmogorov–
Smirnov tests of normality indicate borderline-significant devi-
ation from normality in the direction toward unusual ‘‘peaked-
ness’’ and away from bimodality, for both z distributions. Last,
the Kolmogorov–Smirnov comparison between equal-mean and
equal-variance cohort and control z distributions finds absolutely
no reason to treat their shapes differently. The results of these
analyses are consistent with the interpretation that each mouse
movement in the cohort condition is being partially attracted
toward the cohort object because the lexical representation
associated with that object is simultaneously partially active and
competing with the correct lexical representation.

Simulation
Methods. To map a linking hypothesis between hypothesized
partially active lexical representations in the brain and the
observed hand-movement trajectories across a mouse pad, a
computational simulation of the results was implemented by
interfacing the TRACE model of spoken-word recognition (14)
by using a lexicon of 14 words corresponding to the objects used
in the experiment, with a normalized-recurrence attractor net-

work (24). If we used TRACE alone, we would be forced to
summarily turn off lexical nodes in TRACE that correspond to
objects that are not present in a given visual display, to prevent
the simulation results from predicting movements toward objects
that are not there. This manipulation would be tantamount to
making the unrealistic claim that lexical activation is discretely
constrained by visual context, such that if a candle were not in
the visual field, then hearing ‘‘candy’’ would cause no activation
whatsoever of the lexical representation for ‘‘candle.’’ However,
because one of the vectors in the attached normalized recurrence
network represents objects in the visual scene, this graded
constraint allows us to feed all of the lexical activations of
TRACE over time into the normalized recurrence network and
allow the gradual competitive process of that network to induce
motor movement only toward objects that are actually present
and actionable.

Activations of lexical nodes over time in TRACE were fed
gradually into the lexical vector of a localist attractor network
composed of 14 lexical nodes, 14 visual nodes, and 14 integration
nodes, where the lexical vector (L) and the visual vector (V) are
each normalized so that their n nodes sum to 1.0 before being
averaged at the integration vector. In the normalized-recurrence
competition algorithm, cumulative feedback to a lexical or visual
node is based on multiplying the current activation of that node
by the activation of its corresponding integration node (which is
itself simply an average of the corresponding visual and lexical
nodes) and adding this product to the activation of that lexical
or visual node. At the next time step, t, the lexical and visual
vectors are normalized again, and the cycle continues.

Ln,t(norm) � �Ln,t � TRACEn,t�� �
n

(Ln,t � TRACEn,t)

Vn,t(norm) � Vn,t� �
n

Vn,t

Ln,t�1 � Ln,t(norm) � Ln,t(norm)

�� Ln,t(norm) � Vn,t(norm)
2 � [1]

Vn,t�1 � Vn,t(norm) � Vn,t(norm)

�� Ln,t(norm) � Vn,t(norm)
2 �

Because the feedback is multiplicative in normalized recurrence,
only the visual nodes that start out nonzero (because their
corresponding objects are present in the display) will exhibit
activation. For a simplified linking hypothesis of lexical activa-
tion patterns cascading to visual salience patterns that cascade to
motor output systems, the visual nodes were stochastically
sampled at each time step, based on their probabilistic activation,
to produce simulated changes in x, y mouse position.

The x and y increments in simulated mouse position were
calculated such that the mouse moved closer to the object
corresponding to that visual node. Thus, if the two active visual
nodes both elicited movements on a particular time step, then the
simulated mouse-position change would exhibit two y-axis in-
crements and zero x-axis increments (because the two opposite
horizontal movements would cancel each other out). In this
kinematically simplified simulation, the base increment for
horizontal (left and�or right) movements was 0.4 cm, and the
base increment for vertical (upward) movements was 2 cm. To
better mimic the temporal dynamics of the overall movement,
these x and y increments were scaled by two factors. Multiplying
each x and y change in position by an inverted Gaussian velocity

Fig. 3. Distributions of trajectory curvature show no evidence of bimodality.
(A) Overlaid histograms of trajectory curvature in the cohort and control
conditions (z scored together within subject) as measured by the area be-
tween each trajectory and a straight line connecting its start and endpoint,
exhibit unimodal distributions. (B) When the cohort and control conditions
are z scored separately (within-subject), the shapes of their distributions are
statistically indistinguishable. (See text for details.)
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envelope over time, which approximated the observed U-shaped
velocity profile in the human data, produced the slow down that
occurs in both conditions around the middle of the movement.

	pos � 	pos�� 1 �
125

50 �2�
e

�
�t�50�2

2�502 � [2]

Also, multiplying each x and y increment by the inverse propor-
tion of the current distance from the x, y position of the goal in
cm, 1 � x�10, and 1 � y�16, produced the slow down that occurs
in both conditions as the goal is reached (see, for example, the
smooth final approach to asymptote in Fig. 2). Last, for com-
parison with the human data, the 170 time steps of x, y coordi-
nates of the model were normalized to 101 time slices.

Results. Fig. 4 plots the mean x, y movement trajectories (in cm)
from 10 runs of the model in the cohort condition and the control
condition. Much as in the human data (Fig. 1), when the lexical
representation of the distractor object is initially accruing partial
activation at a similar rate to the lexical representation of the
target object (cohort condition), the simulated movement tra-
jectory continues upward between, and equidistant from, the
two objects for a longer period than when the name of the
distractor object exhibits no phonological similarity to the spo-
ken word (control condition).

When proximity to target and distractor over time is plotted
from these simulated changes in x, y position (Fig. 5), the
resulting pattern bears considerable similarity to the human data
(Fig. 2), although the current simulation does exhibit divergence
somewhat earlier than the human data. Comparing the four
curves at every normalized time slice in this image to the four
curves at every time slice in Fig. 2 produces a root-mean-squared
error of 0.0625, and r2 � 0.76 (P � 0.0001).

As for variability in trajectory curvature across multiple runs
of the simulation, the distributions are, not surprisingly, highly
normal. When the area between each trajectory and its straight
line was calculated for 600 runs of the model in each condition
and the data were z scored together, the z distribution for the
cohort trials (mean, 0.114; variance, 0.997; kurtosis, �0.520;
skewness, �0.027) was quite similar to that of the control trials
(mean, �0.114; variance, 0.997; kurtosis, �0.488; skewness,
0.129). The distributions are shown in Fig. 6, bearing some
resemblance to Fig. 3A. Their bimodality coefficients were b �

0.403 and b � 0.404, respectively. Rather than exhibiting the
unusually sharp peak near the mean that was seen in the human
data, the distributions of the simulation conformed quite closely
to a normal distribution. In the Kolmogorov–Smirnov normality
test, both cohort and control z distributions did not remotely
differ from their corresponding (matched mean and variance)
normal distributions (both P � 0.9999). When this normality test
was used to compare the cohort z distribution of the simulation
with the cohort z distribution of the human data (because their
means and variances are quite similar), the difference was not
significant (P � 0.142). However, when the control z distribution
of the simulation was compared with the human data control z
distribution, they were significantly different (P � 0.007). The
notable differences in kurtosis and skewness between the dis-
tributions of the human data and the simulation results remain
to be examined.

General Discussion
These results provide powerful support for models of continuous
uptake of acoustic–phonetic input during spoken-word recog-
nition. The substantial fit between model simulation and human
data provides an encouraging, if simplified, linking hypothesis to

Fig. 4. Simulated movement trajectories resulting from interfacing the
TRACE model of spoken-word recognition with a localist attractor network
and stochastically sampling x and y mouse movements from its visual object
nodes. When the cohort distractor object is present (E), the simulated move-
ment trajectory gravitates to the region in between the two objects for longer
than when the control distractor object is present (F).

Fig. 5. Proximity to target (triangles) and to distractor (squares) over nor-
malized time in the control condition (filled symbols) and the cohort condition
(open symbols) from the simulated mouse movements triggered by graded
lexical activation continuously spreading to visual object nodes.

Fig. 6. Overlaid histograms of the trajectory curvature of the simulation in
the cohort and control conditions (z scored together over all 1,200 runs) reveal
normal unimodal distributions with slightly lower kurtosis and skewness than
those from the human data shown in Fig. 3A.
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support the claim that continuous temporal dynamics of lexical
activations in the brain are being reflected in the continuous
temporal dynamics of motor output. During and soon after the
presentation of a spoken word, temporary ambiguity in the
reference of the speech stream to visible objects produced
competition between two motor output goals, which manifested
itself as a graded spatial attraction toward the competing object
even when the movement eventually settled into the correct
object region.

This tightly coupled relationship among language, vision, and
action is seen in other areas as well, such as signed languages
(where experience with American Sign Language affects per-
ception of nonlinguistic motor movements; ref. 25), in the
following of spoken instructions (where perceived motor affor-
dances have an immediate influence on comprehension; ref. 26),
and even in the coupled postural sway of two speakers conversing
(27). The present findings demonstrate that the continuous
processing of a spoken word is observable in the continuous
execution of motor output, consistent with a nonstop cascaded
sharing of information among perception, cognition, and action
(28, 29).

However, note that it would be a mistake to interpret these
mouse-movement data as evidence that nonballistic mouse
movements are generally more informative for perception and
cognition than ballistic eye movements. The two methodologies
have compensatory strengths and weaknesses. Saccades are
highly temporally sensitive to the existence of early partially
active representations, whereas these mouse movements are

highly spatially sensitive to continuous ongoing competition
between partially active representations. Combining the two
measures at the same time would be useful.

Following from other measures of dynamic motor output
revealing temporally continuous perceptual-motor processes (2,
30, 31), our present findings do more than contribute to evidence
for a cascaded flow of information from perceptual, to cognitive,
to motor systems. Our present findings virtually project the
ongoing output of the language comprehension process onto a
two-dimensional action space in which the potential goal objects
act like attractor points and the manual movement serves as a
record of the mental trajectory traversed as a result of the
continuously updated interpretation of the linguistic input (21–
23). This experimental paradigm promises to facilitate explora-
tions of continuous temporal dynamics in many aspects of
real-time language comprehension, categorization, visual
search, and other aspects of cognition in general.
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