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The ability to anticipate others’ actions is crucial
for social interaction. It has been shown that this
ability relies on motor areas of the human brain
that are not only active during action execution
and action observation, but also during antici-
pation of another person’s action. Recording
EEGQ1 during a triadic social interaction, we
assessed whether activation of motor areas per-
taining to the human mirror-neuron system
prior to action observation depends on the
social relation between the actor and the obser-
ver. Anticipatory motor activation was stronger
when participants expected an interaction part-
ner to perform a particular action than when
they anticipated that the same action would be
performed by a third person they did not interact
with. These results demonstrate that social
interaction modulates action simulation.
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1. INTRODUCTION
Anticipating what others are going to do next is a
principal function of social cognition. Not only cogni-
tive and neurophysiological mechanisms underlying
mental state attribution (Amodio & Frith 2006), but
also predictive mechanisms in the human motor
system may contribute to this function (Wolpert et al.
2003; Wilson & Knoblich 2005; Aglioti et al. 2008).
Research in primates has revealed a ‘mirroring’ func-
tion in groups of neurons in premotor and parietal
cortices that fire during execution and observation of
goal-directed movements (Gallese et al. 1996; Fogassi
et al. 2005). Evidence for the existence of a topographi-
cally similar, human ‘mirror-neuron system (MNS)’
with analogous functional properties has been pro-
vided by neurophysiological and imaging studies (e.g.
Calvo-Merino et al. 2006; Hari 2006; Southgate et al.
2009). In addition, areas with strong reciprocal
connections to the MNS, such as the primary
motor cortex (MI) and the supplementary motor
area (SMA), have been shown to exhibit MNS-like
activity (Koski et al. 2003; Kilner & Frith 2007).

In support of anticipatory motor activation, it has
been shown that MNS activation occurs prior to an

expected action (Kilner et al. 2004; Ramnani & Miall
2004) and in the absence of direct action observation
(Umiltà et al. 2001). Central to the interpretation of
these findings is the concept of motor simulation
(Jeannerod 2001), which suggests that the overlapping
neural activations for observing, anticipating and per-
forming actions can be explained by the assumption
that observers simulate others’ actions using their
own motor system.

The extent to which simulation processes are trig-
gered when others’ actions are observed or expected
depends on the observer’s expertise at performing
these actions (Calvo-Merino et al. 2006; Aglioti et al.
2008). Moreover, it has been demonstrated that
MNS activation is modulated by the bodily orientation
and gaze direction of the observed actor (Kilner et al.
2006, 2009). However, it is unknown whether the
social relation between individuals modulates action
simulation. Addressing this question is crucial, because
to date studies that have investigated modulations of
MNS activity as a function of social context have
manipulated physical cues rather than the psychologi-
cal relations between the actor and the observer that
are constitutive of human social life.

In two electrophysiological (EEG) studies, we tested
whether anticipatory motor activation is stronger when
people anticipate the action of an interaction partner
compared with the same action performed by a
‘loner’. As a measure of anticipatory motor simulation,
we focused on the amplitude of the contingent negative
variation (CNV) (Walter et al. 1964). The late part of
CNV is considered a marker of motor preparation
and predominantly reflects SMA and MI activity (for
a review, see Leuthold et al. 2004). In addition, we
investigated brain oscillatory activity (15–25 Hz)
within the frequency range of the beta rhythm. The
decrease of beta activity prior and during a movement
is typically strongest over primary motor areas and
constitutes a well-established index of motor activation
(Pfurtscheller & Lopes da Silva 1999). Thus, we pre-
dicted that participants would show a larger CNV
amplitude, as well as a stronger decrease in beta
activity, while anticipating an interaction partner’s
action compared with anticipating the same action
performed by a person who always acted alone.

2. MATERIAL AND METHODS
(a) Participants
Experiment 1. EEG was recorded form 16 right-handed participants
(10 females and six males; age ¼ 25.3+6.4 years). An interaction
partner and a loner were assigned to each EEG participant.

Experiment 2. EEG was recorded from nine pairs of right-handed
participants (nine females and nine males; age ¼ 25.5+6.5 years).
A loner was assigned to each group. Two participants were removed
from the analysis owing to technical problems during data recording.

Participants did not know each other before the experiment.
They practiced their tasks during a short practice block.

(b) Procedure
For details, see electronic supplementary material, Methods.

Experiment 1. The participant, the interaction partner, and the
loner were seated around a table forming an equilateral triangle.
They performed a choice-reaction task, where visual cues indicated
the type of action to be performed, followed 1000 ms later by an
imperative visual stimulus prompting them to act. All three people
had a clear view of each other and their respective movements.
Their task was lifting an object placed in the middle of the table
and either returning it to its original position (individual action) or
passing it to another person/receiving it from another person (joint
action). During joint action, participants equally often passed the
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object and received it from the partner. All three people performed
individual actions. Half of the blocks were performed with the left
hand and the other half with the right hand. The participant engaged
with the ‘partner’ in joint action, whereas the ‘loner’ always acted
alone and never interacted with the others. The loner performed
individual actions three times as often as each of the partners to
ensure that all individuals were active equally often. In one-eighth
of the trials, the cue instructed all three individuals not to act
(no-go condition). EEG was recorded from one of the partners
(figure 1a). The critical period for our analysis was the time interval
between the cue and the imperative stimulus, during which all
participants remained motionless, fixating a cross presented on top
of the object.

Experiment 2. We employed the same experimental paradigm,
with the important difference that partners were facing each other,
while the loner was sitting at the side (figure 2a). The loner
performed individual actions as often as each of the partners, to
establish a higher frequency of interaction between the partners.
Moreover, EEG was recorded from both partners.

3. RESULTS
We examined motor activation when anticipating to
observe an individual action (object lifted and placed
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Figure 1. (a) Colour-coded drawing of setup in Experiment 1. (b) Pooled, colour-coded CNV waveforms (derived from
electrodes Cz, FCC1h, FCC2h, CCP1h, CCP2h) and scalp voltage topography (top view) of the difference between partner
and loner (average data). The late CNV when anticipating to observe the individual action of the partner (in purple) is
significantly higher compared with anticipating to observe the same action performed by the loner (in orange) during the
last 200 ms (grey square) before the imperative signal onset. The late CNV before the loner’s action did not differ from the
CNV in the no-go condition (in black). Presented here as a point of reference, the late CNV was higher when preparing for
action execution (in green) than when anticipating to observe another person’s action (for similar results, see Kilner et al. 2004).
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2 D. Kourtis et al. Favouritism in the motor system

Biol. Lett. (2010)

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

ARTICLE IN PRESS

rsbl20100478—3/6/10—20:42–Copy Edited by: Chitra S



back) performed by one’s partner compared with
anticipating the same action performed by the loner.

Experiment 1. As predicted, the late CNV was more
pronounced when participants anticipated the partner
to act individually compared with when they expected
that the same action would be performed by the loner
(figure 1b). A 3 ! 2 ANOVA with the factors
anticipated action (none, loner, partner) and hand
(left versus right) showed a significant main effect of
action (F2,30 ¼ 5.90, p, 0.01). The late CNV was
more pronounced for the partner compared with the
loner (t15 ¼ 2.28, p, 0.05). The late CNV for the
loner was not significantly different from the no-go
condition (t15 ¼ 1.16, p ¼ 0.27). There was no effect
of responding hand nor a significant interaction.
These results indicate that simulation of another
person’s action, as reflected in activation of motor
cortices, is more pronounced when the other is
perceived as an interaction partner.

Experiment 2. To further validate the observed effect
of social interaction on action simulation, Experiment
2 tested whether a more salient contrast between the
partner and the loner would increase the observed
differences in the late CNV. Confirming our predic-
tion, the results showed a larger difference in the late
CNV between anticipating the partner’s individual
action and the loner’s individual action (figure 2b).
The 3 ! 2 ANOVA revealed a significant main effect
of the anticipated action (F2,30 ¼ 5.83, p , 0.01).
There was no effect of responding hand nor a signifi-
cant interaction. As in Experiment 1, the late CNV
was more pronounced for the partner than for the
loner (t15 ¼ 3.21, p, 0.01). Again, the loner was
not significantly different from the no-go condition
(t15 ¼ 1.46, p ¼ 0.17).

The analysis of beta oscillations as an index of
motor activation further corroborates these findings.
Whereas no significant modulations of beta activity
were observed in Experiment 1, beta activity in
Experiment 2 revealed a similar pattern as the late
CNV. The decrease in beta activity was stronger
when participants anticipated the partner’s individual
action compared with the loner’s action (figure 2c). A
3 ! 2 ! 2 ANOVA with the factors anticipated action
(no-go, loner, partner), hand and hemisphere verified
the statistical significance of this result, F2,30 ¼ 6.36,
p , 0.01, for the main effect of action; none of the
other effects or interactions were significant. There
was a significant difference between the partner and
the loner (t15 ¼ 2.69, p, 0.05), but no significant
difference between the loner and the no-go condition
(t15 ¼ 0.77, p ¼ 0.45).

4. DISCUSSION
The present results indicate that motor activation
during action anticipation depends on the social
relation between the actor and the observer, formed
during the performance of a joint action task. Simu-
lation of another person’s action, as reflected in the
activation of motor cortices, gets stronger the more
the other is perceived as an interaction partner. This
finding extends previous work showing that the acti-
vation of brain areas of the human MNS is

influenced by factors such as the motor expertise of
the observer (Calvo-Merino et al. 2006), as well as
body and gaze cues that may affect the ‘social rel-
evance’ of the actor (Kilner et al. 2006, 2009). Our
results cannot be attributed to predictive eye move-
ments, since no action was taking place during the
foreperiod and participants fixated the object. To our
knowledge, the present findings provide the first dem-
onstration that, besides physical cues, the social
relation between an actor and an observer constrains
action simulation.

One may argue that observers did not simulate the
impending individual action of their partner, but
instead prepared to act themselves, erroneously pre-
paring for joint action. According to this view, the
higher frequency of interaction in Experiment 2
could have led to the stronger motor preparation
observed in this experiment. Results from a control
experiment where the frequency of interaction was
manipulated argue against this explanation (see elec-
tronic supplementary material, Control experiment).
In this experiment, the late CNV was not affected by
the frequency with which participants performed
joint actions with two partners.

Our results are consistent with prior evidence that
demonstrates considerable flexibility of the MNS. In
particular, incompatible visuomotor training has been
shown to lead to reversed patterns of mirror responses
in the brain (Catmur et al. 2007). The present findings
extend this research by demonstrating that modu-
lations of MNS activity can occur without prior
training, reflecting top-down modulations governed
by social interaction. Whereas the motor system does
not seem to be activated by the impending actions of
those whom we do not interact with, it favours the
actions of our interaction partners. While it is already
known that social relations modulate empathic brain
responses (Singer et al. 2006), the present study pro-
vides the first evidence that social relations modulate
action simulation.
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