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Abstract The nine-dot problem is often used to demon-

strate and explain mental impasse, creativity, and out of the

box thinking. The present study investigated the interplay

of a restricted initial search space, the likelihood of

invoking a representational change, and the subsequent

constraining of an unrestricted search space. In three

experimental conditions, participants worked on different

versions of the nine-dot problem that hinted at removing

particular sources of difficulty from the standard problem.

The hints were incremental such that the first suggested a

possible route for a solution attempt; the second addition-

ally indicated the dot at which lines meet on the solution

path; and the final condition also provided non-dot loca-

tions that appear in the solution path. The results showed

that in the experimental conditions, representational

change is encountered more quickly and problems are

solved more often than for the control group. We propose a

cognitive model that focuses on general problem-solving

heuristics and representational change to explain problem

difficulty.

Introduction

There is growing evidence that an insight to the solution of

a problem can be characterized by a representational

change (Knoblich, Ohlsson, Haider, & Rhenius, 1999;

Ohlsson, 1984a, 1992; Öllinger, Jones, & Knoblich, 2008;

Thevenot & Oakhill, 2008). This evidence makes it diffi-

cult to explain insight problem solving within the classical

information-processing account (Newell & Simon, 1972),

where problem solving is understood as search within a

well-defined problem space (problem representation). The

problem space account has no mechanism to implement a

representational change for instances when the current

search gets stuck, is insufficient, or does not reduce the

distance to the desired goal.

There are a few accounts that attempt to remedy this

omission. One suggestion is to claim that insight problems

are nothing special and therefore representational change

plays only a marginal role. For such explanations, problem

difficulty relates either to the size of the problem space

being overly large and preventing exhaustive search

(Kaplan & Simon, 1990), or that problem solvers apply

inappropriate heuristics when searching the problem space

(MacGregor, Ormerod, & Chronicle, 2001; Ormerod,

MacGregor, & Chronicle, 2002). Both accounts miss a

cognitive process that addresses the change of the search

space. In the first, an additional process is necessary that

re-focuses on particular areas of the search space by chang-

ing the problem representation; in the second an additional

cognitive process is required that changes the search space

after repeated failures of the problem-solving process.

Ohlsson (Knoblich et al., 1999; Ohlsson, 1984a, b,

1992) provided a detailed framework that stressed the

importance of a representational change for insight prob-

lem solving, and identified impasse as a crucial pre-
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condition. Moreover, Ohlsson (1992) identified at least

three different processes that drive a representational

change and thereby break an impasse: elaboration,

re-encoding, and constraint relaxation. Although Ohlsson’s

model (1992, p. 20) incorporates search as a necessary

process before an impasse is met, the framework mainly

focuses on what processes occur to release the problem

solver from impasse, without a great deal of elaboration on

the particular nature of search processes before and after an

impasse. Jones (2003) provided a model that elaborated

Ohlsson’s notion that insight problem solving can be

understood as a sequential process of different phases

(search–impasse–insight–search, see also Ash & Wiley,

2006). This model suggests that there might be a concerted

interplay of search and impasse, with each affecting the

other. The goal of the present study is to apply an extension

of this model (see Fig. 1) to the famous nine-dot problem.

Our general proposal is that insight problem solving is a

dynamic search process that proceeds in consecutive

stages. In line with Ohlsson (1992) we assume that per-

ceptual processes and prior knowledge define what is and is

not represented in the initial problem representation. This

representation is searched and constrained by heuristics

(e.g. MacGregor et al., 2001; Newell & Simon, 1972). The

search could be either successful, at which point the search

terminates and a solution is found, or the search can lead to

repeated failures and an impasse is reached (Ohlsson,

1992). The smaller the search space is, the faster the

realization that no further progress is possible (Kaplan &

Simon, 1990; Ormerod et al., 2002). If impasse was caused

by the problem representation being inadequate, then it

must be overcome by a representational change. The

likelihood of achieving representational change is largely

governed by the difficulty in relaxing self-imposed prior

knowledge constraints that have been placed on the prob-

lem or in decomposing problem elements into their con-

stituent parts (see Knoblich et al., 1999 for more

information). Should representational change be achieved,1

a new problem representation is established that subse-

quently changes the problem space (to be smaller or larger,

ordinarily). Once again, heuristics are necessary that effi-

ciently search of the modified problem space.

The model is an elaboration of Ohlsson’s representa-

tional change theory and has similar implication: First,

insight is caused by a representational change. Second,

there is no particular class of insight problems that neces-

sarily requires a representational change; each problem can

be solved without insight if the initial problem represen-

tation is adequate and the appropriate heuristics are avail-

able. Third, the difficulty related to attaining insight can

have different causes (Kershaw, Flynn, & Gordon, 2013;

Kershaw & Ohlsson, 2004). Whereas previous models have

highlighted the role of perception, memory, and heuristics,

the present model tries to capture the interplay between

these factors. Doing so, it acknowledges that for each

problem there can be different combinations of causes of

problem difficulty that have to be considered. For instance,

Jones (2003) demonstrated for the car park problem that

heuristics play an important role before an impasse, but

breaking the impasse required a representational change.

Recently, Öllinger, Jones, Faber and Knoblich (2012)

demonstrated that for different versions of the eight-coin

problem (Ormerod et al., 2002) the main source of problem

difficulty is determined by the required representational

change. Nevertheless, although heuristics had no overall

impact on solution rates, they still predicted the selection of

coins.

In the present study, we applied the above model to the

nine-dot problem (Maier, 1930) that has kept problem

solving researchers busy over the last decades (Burnham &

Davis, 1969; Chronicle, Ormerod, & MacGregor, 2001;

Kershaw & Ohlsson, 2004; Lung & Dominowski, 1985;

MacGregor et al., 2001; Maier, 1930; Scheerer, 1963;

Weisberg & Alba, 1981). There is clear evidence for

multiple causes of problem difficulty in this problem

(Kershaw & Ohlsson, 2004), and it thus provides an

opportunity to better understand the interplay of search and

1 It does not follow that reaching impasse on a problem automatically

produces a representational change (i.e. insight), since this is not

always the case (Jones, 2003). Equally, whether insight is achieved

and if so how quickly it is achieved depends on multiple factors, such

as the difficulty of a change to the problem representation and how

large the problem space is (Knoblich et al., 1999; Kershaw et al.,

2013).

Fig. 1 Flow-chart of insight problem solving. Starting in the top left

corner, a problem representation is established by prior knowledge

and perceptual aspects, e.g. Gestalt laws, grouping, chunking. The

problem representation is searched by heuristics. This can be

successful: a solution is attained; or unsuccessful: an impasse is

encountered. To overcome an impasse, a change of the problem

representation is likely to be necessary. A new search will then be

applied to the changed problem representation
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representational change. In the nine-dot problem, solvers

need to connect nine dots that are arranged in a 3 9 3

square with four straight lines without lifting the pen off

the paper (see Fig. 2a, b). It has consistently been shown

that giving only a few minutes of time, the problem is

extremely difficult to solve (see Kershaw and Ohlsson,

2004).

Explaining the difficulty of the nine-dot problem

According to the model depicted in Fig. 1, one source of

difficulty in the nine-dot problem is that problem solvers

initially only consider moves that remain within the 3 9 3

grid (due to a perceptually driven boundary constraint that

keeps lines within the perceived 3 9 3 square). That is, the

problem solver is working within a problem space that is

overly constrained, but still too large to be exhaustively

searched (Burnham & Davis, 1969; MacGregor et al.,

2001). After repeated failure within the overly constrained

problem space, the task for the problem solver is to

accomplish a representational change—thus, overcoming

the boundary constraint (Ohlsson, 1992; Kershaw &

Ohlsson, 2004). However, relaxing the boundary constraint

now leads to a problem space that is much too large,

because if lines can begin and/or end, or turn at non-dot

locations then there are a potentially infinite number of

lines that can be drawn (see also Kaplan & Simon, 1990).

We believe that this is why previous research has found

that even when the boundary constraint is relaxed (Weis-

berg & Alba, 1981), participants still find that solution to

the nine-dot problem is evasive unless they are given fur-

ther information that may constrain the problem space (e.g.

specification of non-dot locations or specification of the

configuration of the solution path).

Consequently, we investigated the extent to which per-

ceptual hints that relate to the solution path in the nine-dot

problem facilitate its solution. In particular, we examined

the effects of perceptual information both pre-impasse and

post-impasse—first, the amount of (perceptual) solution

path information that is needed to restrict the initial search

space to facilitate the problem solver reaching impasse and

to overcome the boundary constraint; and second, how

much information is needed to constrain the subsequent

post-insight problem space in order to solve the nine-dot

problem. Hitherto perceptual hints have provided minimal

benefit in increasing the solution rate of the nine-dot

problem (Weisberg & Alba, 1981; Lung & Dominowski,

1985; Chronicle et al. 2001; Kershaw & Ohlsson, 2004).

For example, providing explicit hints to draw lines beyond

the virtual nine-dot square (Burnham & Davis, 1969;

Weisberg & Alba, 1981) and providing explicit perceptual

hints that indicate that lines go beyond the virtual square

(Chronicle, et al., 2001) had limited influence on solution

rates. Even when two additional dots in different colours

were provided at the non-dot locations, there was little

effect (Ormerod, Chronicle, & MacGregor, 1997; see

Fig. 2c). Apparently, the different colour of the dots made

it difficult to integrate the dots into the solution, and more

importantly, as Kershaw and Ohlsson (2004) showed, it is

still difficult to realize that a change in the direction of a

line (i.e. a non-dot turn) is necessary at non-dot locations.

That is, there are two aspects that have to be taken into

account. First, achieving a representational change to

overcome the boundary constraint and thereby drawing

lines to non-dot locations, resulting in a relaxed search

space; and second, using efficient heuristics that guide the

search process in making non-dot turns within the relaxed

search space.

Our model suggests that—in line with Kershaw and

Ohlsson (2004)—the nine-dot problem has multiple sour-

ces of difficulty. The key reason that perceptual hints have

thus far proved ineffective in the nine-dot problem is

because the post-impasse search space is too large to

navigate successfully within a limited time period. By

using appropriate perceptual information to guide the

problem solver, we hope to demonstrate how and why

perceptual hints can direct attention and increase solution

rates dramatically. For instance, guiding attention to the

crucial problem elements significantly increases the

Fig. 2 The nine-dot problem (a) and its solution (b), and the 11-dot variant introduced by Ormerod et al. 1997 (c)
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solution rates of insight problems like Duncker’s (1945)

tumour problem (Grant & Spivey, 2003; Litchfield & Ball,

2011; Thomas & Lleras, 2007).

In three different conditions we systematically increased

the salience of perceptual features of the nine-dot problem.

The first two experimental conditions were in line with the

work of Kaplan and Simon (1990) who showed that

increasing the perceptual salience of crucial features can

facilitate the solution of insight problems, because it helps

in applying the appropriate heuristics that restrict the given

problem space. The intention was to induce an impasse

more quickly by (a) constraining the initial problem space

by illustrating a possible solution path by presenting arrows

that point to locations outside of the 3 9 3 grid (thus

suggesting that the boundary constraint needs to be

relaxed); and (b) after relaxing the constraint the arrows

restrict the larger search space and indicate potential non-

dot turns. In the first condition, which we label the P

condition (P = path), within each dot we embedded an

arrow that indicated the direction of one of the possible

solutions (see Fig. 3). In the second condition, we added

the particular spatial pattern of the solution (Kershaw &

Ohlsson, 2004). The solution looks like an isosceles

triangle (see Fig. 2b) where three lines meet at the apex.

We increased the salience of a particular apex dot by

indicating three arrows that meet in this dot. This condition

was termed the Path-Apex condition (PA, see Fig. 3b). Our

main predictions were that solution rates would be higher

(PA [ P [ Control Group) and that participants would

more quickly overcome the boundary constraint when

more perceptual hints are available (PA [ P [ Control

Group).

A further aim was to explicitly test Kershaw and Ohls-

son’s (2004; Ohlsson, 1992) assumption of the necessity of

a representational change. Highlighting non-dot positions

in the PAN (path/apex/non-dot turn, see Fig. 3c) condition

should further increase the likelihood to overcome the

boundary constraint. The non-dot positions explicitly draw

attention to visual–spatial positions outside the imposed

virtual square of the nine dots (Grant & Spivey, 2003), and

should help to generate a representational change. Speci-

fying the non-dot points should also facilitate the solution

of the nine-dot problem by constraining the post-insight

problem space, because by combining the arrow informa-

tion with the non-dot information, the location of the

non-dot turns is given. Accordingly, we predicted the

participants in the PAN condition should have the best

chance to quickly overcome the boundary constraint and to

quickly solve the problem.

A further prediction was that for participants overcom-

ing the boundary constraint in the control and experimental

conditions, solution rates should be higher for the experi-

mental conditions than the control group because the per-

ceptual hints in the P, PA, and PAN condition should

restrict the search space after the representational change.

Method

Participants

The 136 paid participants (32 males, mean age 25, range

18–34) were recruited by advertising at the University of

Munich and in local newspapers and were randomly

assigned to one of the four groups (34 per group). Nineteen

additional participants were excluded beforehand because

they reported to be familiar with the nine-dot problem. The

data of one participant in the PAN condition was not

analyzable and was therefore discarded.

Materials and procedure

Participants received a booklet that contained written

instructions and five pages displaying copies of the prob-

lem (so that they could start over after failed solution

attempts). Each dot in the problem statement was printed in

Fig. 3 a P condition where solution path is indicated by arrows. b PA condition with additional information regarding the location where lines

meet. c PAN condition where additional non-dot points were provided
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gray with a surrounding black circle. Each participant was

tested individually in a quiet room after reading the fol-

lowing instruction (in German): ‘‘Connect the nine dots

drawing four connected straight lines. It is not allowed to

lift the pencil from the paper and it is not allowed to retrace

lines. Feel free to start over as often as you like. You have

10 min for the solution. Please indicate the sequence of

lines drawn using the numbers 1 to 4—1 for the first line, 2

for the second, etc.’’

For all experimental conditions, the dots contained

arrows as displayed in Fig. 3a–c. In addition, the PAN

condition consisted of two additional dots (‘‘non-dots’’),

printed in a brighter gray and without a surrounding circle

to distinguish them from those of the nine-dot problem (see

Fig. 3c).

Data analyses

The following definitions and classifications were used for

analysing the data:

• Move: A move was defined as one straight line that

connected dots and/or non-dots.

• Dot moves and non-dot moves: Moves were classified

as dot moves (a line starting and ending on one of the

nine dots) or as non-dot moves (a line starting and/or

ending at a non-dot point).

• Solution: A solution was defined as a sequence of four

moves that cancelled out all nine dots.

Results

The results are divided into three sets of analyses. As a

manipulation check, we first analysed whether the per-

ceptual hints indicating the solution path affected the move

selections of participants. Second, we examined solution

rates in order to assess whether and how perceptual hints

facilitated the problem solution. Third, we determined how

the perceptual hints influenced insight. This was achieved

by (a) examining the pre-insight influence of the hints (i.e.

before realizing that the boundary constraint needs to be

overcome) as the number of moves required before the first

move was made that went outside of the virtual square

formed by the dots; and (b) examining the post-insight

influence of the hints (i.e. after overcoming the boundary

constraint) by analysing the solution rates for participants

who achieved insight.

Manipulation check

We tested whether participants in the experimental condi-

tions preferred moves that followed the direction of the

arrows compared to the control group where the problem

statement did not contain any directional information. To

do so we examined for each individual the percentage of

moves that followed the arrowed pattern depicted in the

experimental conditions (for the control group, we ana-

lysed moves that involved the same dots in the arrowed

pattern as a baseline comparison). Additionally, we asses-

sed whether the pattern of solvers and non-solvers differed

across the groups.

As Fig. 4 illustrates, participants in all experimental

conditions preferred moves that followed the direction of

the arrows in the problem statement. Additionally, the

figure demonstrates that solvers showed an even stronger

preference for such moves than non-solvers.

An ANOVA with the between factors Condition (CG, P,

PA, PAN) and Solver (non-solver, solver) and the depen-

dent variable mean number of moves following arrows

revealed a highly significant effect for the factor Condition,

F(3, 126) = 18.35, p \ 0.01, gp
2 = 0.30. Post hoc com-

parisons (Scheffé) showed that all experimental conditions

differed significantly from the CG condition (p \ 0.01),

and that the PAN condition differed from the P and the PA

conditions (p \ 0.05). There was no difference between the

PA and P conditions. There was also a highly significant

main effect for the factor Solver, F(1, 126) = 10.52,

p \ 0.01, gp
2 = 0.08, with solvers’ relying more strongly

on arrow direction. There was no significant interaction

(p = 0.08).

Solution rate

Table 1 provides an overview of the solution rate for each

of the study conditions. The data showed that all experi-

mental conditions showed a higher solution rate than the

CG.

We analysed the influence of each additional piece of

information (e.g. providing the path plus apex rather than

just the path) on solution rates across the conditions using a

Fig. 4 Mean number of biased moves across groups and separated

for solvers and non-solvers in comparison with the move pattern of

the CG. Standard errors are plotted
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binary logistic regression (BLR) (Hosmer & Lemeshow,

2000). BLR provides a method of analysing the influence

of dichotomous, discrete, or continuous predictors on a

binary outcome variable, and has already been successfully

applied to the analysis of insight problem-solving experi-

ments (e.g. Kershaw et al., 2013; Öllinger et al., 2012).

BLR produces B values, and odds ratios. B values indicate

the direction of the relationship; odds ratios indicate the

likelihood that a participant in a particular group can be

categorized as a solver, e.g. an odds ratio of 2 for a par-

ticipant in a particular condition illustrates that the partic-

ipant is 2 times more likely to solve the problem than for

the baseline (CG) condition (see Kershaw et al., 2013).

Entering the three experimental conditions and the CG

as baseline resulted in a significant model, v2(3,

135) = 40.61 that classified 74.8 % of solvers correctly.

Table 2 shows the BLR coefficient B, the Wald v2, and the

odds ratio for each of the three conditions. The PA and

PAN conditions differed significantly from the CG, the P

condition did not. The regression coefficients were positive

and increased with the amount of perceptual information

provided. The odds ratio showed that a person in the PA

group is 5.92 times more likely to solve the problem than a

person in the CG. For the PAN group the odds ratio

increases dramatically, to a value of 33.75.

Impact of perceptual constraints, pre-insight

We determined whether providing different degrees of

perceptual information resulted in a faster realization of

non-dot moves. We calculated the median number of

moves until a non-dot move appeared across all solvers

(Mdn = 4). Accordingly, we split the solvers into partici-

pants that had a fast or slow realization. Table 1 (column 3)

illustrates that as expected, the number of participants that

had a fast realization increased monotonically with the

amount of perceptual information provided. We applied a

BLR, using the CG as the reference category. The model

was significant, v2(3, 135) = 16.82, and classified 78.5 %

of participants correctly. Table 3 shows the BLR coeffi-

cient B, the Wald v2, and the odds ratio for each of the

three conditions. The data demonstrated that only the PAN

condition differed significantly from the CG. The odds

ratio indicates that participants in the PAN condition are

13.33 times more likely to overcome the boundary con-

straint within the first four moves than for the CG. For the

P and PA conditions that do not provide non-dot locations,

there were no statistical differences. This shows how strong

the boundary constraint is in the nine-dot problem—par-

ticipants will often fail to make use of arrows that point to

locations outside of the perceived 3 9 3 square unless they

are also accompanied by non-dot locations.

Impact of perceptual constraints, post-insight

We analysed whether the post-insight problem spaces were

sufficiently constrained by the experimental conditions

such that insight and problem solution were facilitated. In

doing so, we determined how the experimental conditions

facilitated problem solution once the boundary constraint

was relaxed. Table 1 summarizes the data and shows that

once insight has been achieved, the arrows play a major

role in constraining the subsequent problem space. Almost

all participants in the experimental conditions who made

non-dot moves eventually solved the problem, whereas in

the CG only half of the participants that drew at least one

line to a non-dot position were able to solve the problem.

Table 1 Solution rates and non-dot moves classified according to

different selection criteria

Condition % and (#)

of solvers

% and (#)

of fast

realization

% and (#)

of Ps that

made non-

dot moves

Non-dot Ps

who solve,

% and

(solvers/

non-dot

moves)

CG (N = 34) 11.76 (4) 5.88 (2) 23.53 (8) 50 (4/8)

P (N = 34) 26.47 (9) 14.71 (5) 29.41 (10) 90 (9/10)

PA (N = 34) 44.12 (15) 20.59 (7) 44.12 (15) 100 (15/15)

PAN (N = 33) 81.82 (27) 45.45 (15) 84.85 (28) 96 (27/28)

Table 2 Binary logistic regression model for the solution rates

comparing all experimental conditions against the control group

Predictor B SE Wald

v2
df Sig. OR 95 % CI

Lower Upper

Condition 29.75 3 0.01

P 0.99 0.66 2.27 1 0.13 2.70 0.74 9.83

PA 1.78 0.64 7.86 1 0.01 5.92 1.71 20.54

PAN 3.52 0.70 25.43 1 0.01 33.75 8.60 132.53

SE standard error, Sig. significance (p value), OR odds ratio

Table 3 Binary logistic regression model for the fast realization data

comparing all experimental conditions against the control group

Predictor B SE Wald

v2
df Sig. OR 95 % CI

Lower Upper

Condition 14.34 3 0.01

P 1.02 0.88 1.35 1 0.25 2.76 0.49 15.33

PA 1.42 0.84 2.85 1 0.09 4.15 0.79 21.66

PAN 2.59 0.81 10.27 1 0.01 13.33 2.73 65.02

SE standard error, Sig. significance (p value), OR odds ratio
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We tested whether the number of participants that made

non-dot moves and solved the problem, and those who

made non-dot moves and failed to solve the problem,

varied between the conditions. With pairwise v2 tests we

found that the PA condition differed from the CG, v2(1,

23) = 9.08, p \ 0.01, k = 0.50 and the PAN differed from

the CG, v2(1, 36) = 11.22, p \ 0.01, k = 0.38. The P

condition only marginally differed from the CG, v2(1,

18) = 3.55, p = 0.06, k = 0.38. There were no signifi-

cant differences between the experimental conditions

(ps [ 0.20).

Discussion

The current study aimed to determine the role of problem

space, search, impasse, and representational change on

solution rates to the nine-dot problem. Our cognitive model

hypothesized that insight problems are influenced by the

size of the pre-insight search space, the difficulty of

overcoming the impasse itself, and the size of the post-

insight search space. We tested key components of our

hypothesis by examining how the size of the search space

influenced insight problem solving using the nine-dot

problem. The pre-insight search space was constrained

using arrows and additional perceptual information (see

also Kaplan & Simon, 1990; MacGregor et al., 2001;

Ormerod et al., 2002) to increase the likelihood of realizing

that the applied solution strategies failed. Our cognitive

model suggests that this in turn should facilitate impasse

with the consequence that the likelihood of representational

change increases (Ohlsson, 1992). Following the repre-

sentational change, the size of the nine-dot problem space

increases dramatically. The perceptual information pro-

vided therefore constrains this problem space, thus making

problem solution more tractable. The results supported the

predictions of the cognitive model, as we now discuss in

detail.

Achieving insight

The only condition to benefit from perceptual informa-

tion—in terms of overcoming the boundary constraint—

was the PAN condition. The combination of arrows that

indicate the solution path/apex and the additional infor-

mation of a strong explicit perceptual hint to apply moves

to non-dot locations clearly helps to overcome the bound-

ary constraint more effectively than in all other condi-

tions. 28 of 33 participants (85 %) overcame the constraint

in the PAN condition, almost twice as many participants

than in any other condition. The odds ratio indicates that in

the PAN condition it was 13.33 more likely to overcome

the boundary constraint than in the control group. This

finding is important because as Chronicle et al. (2001)

clearly showed, the nine-dot problem is resistant to addi-

tional perceptual information concerning non-dot locations,

and supports Kershaw and Ohlsson’s (2004) assumption

that realizing the necessity of non-dot turns is a main

source of problem difficulty. The provided arrows help to

easily realize that a change of direction is necessary at the

highlighted non-dot location. This is further supported by

the number of participants whose first four moves include

one that is outside of the perceived 3 9 3 square: 45 % of

participants achieve this for the PAN, more than twice as

many as any other condition. The P and PA conditions

showed no significant facilitation. Thus, without an explicit

indication that the solution requires moves to non-dot

locations, the given path information is not helpful in

overcoming the boundary constraint.

Representational change and solving the nine-dot

problem

For the solution rate data we found that the PAN and the

PA conditions differed from the control group. The PA

condition provides an indication of the solution path (as per

the P condition), but also additional path information

related to the particular spatial pattern of the solution tra-

jectory by providing the apex point where three lines meet.

The additional apex information increases the odds ratio

for a participant to be in the solver category from 2.7 in the

P condition to 5.9 in the PA condition. Given the fact that

there were no differences between the P and PA groups in

overcoming the boundary constraint, it seems likely that

group differences arise from the additional apex informa-

tion in PA influencing the post-insight problem space.

However, the critical data that illustrates the problem of

navigating the post-insight search space concerns the

solution rates of the participants who overcame the

boundary constraint. These ‘conversion rate’ data are quite

remarkable (final column of Table 1). Once insight has

been achieved,[90 % of participants are able to ‘convert’

their insight into a solution for the nine-dot problem in all

of the perceptual hint conditions (P, PA, PAN), compared

to 50 % in the control group. After a representational

change, successful problem solvers still need to restrict the

overly large problem space and this is what the perceptual

hints help them to do. This finding can explain why pre-

vious studies found only small effects of hints that pro-

vided the information that participants have to draw lines

outside the virtual boundaries either by verbal instruction

or by visual cues (Burnham & Davis, 1969; Chronicle

et al., 2001; Weisberg & Alba, 1981). That is, enabling

participants to overcome the boundary constraint may not

be beneficial to many participants who now have to navi-

gate an even larger search space. As we have seen this is a
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complicated task that requires drawing lines to non-dot

points, making turns in different directions, and configuring

the remaining lines in an appropriate way (MacGregor

et al., 2001).

Achieving 100 % success in the nine-dot problem

Even though we believe that the experimental conditions

provided all of the necessary information to solve the nine-

dot problem, approximately 20 % of the participants in the

PAN condition were still unable to do so. A remaining

challenge for participants in the PAN condition was to

combine (according to Kershaw & Ohlsson, 2004) the

solution path hints given by the arrows with the hints given

by the non-dot locations. Clearly integrating the two dif-

ferent hints is an additional source of difficulty that some

participants were unable to master.

A closer inspection of the non-dot data of the PAN

condition showed that one non-solver made a total of 19

non-dot moves but was not able to combine the four lines

in a way to find the solution (i.e. the participant was unable

to combine the information given by the arrows to that

given by the non-dot locations). The remaining four

non-solvers in the PAN condition did not perform a single

non-dot move (i.e. they were unable to use the arrow and

non-dot information to relax the boundary constraint).

Apparently, these participants suffered from a strong self-

imposed constraint not to move outside the given nine dots.

This again speaks for the power of a perceptually induced

constraint. It also raises an important problem of our

manipulation. The additional information given naturally

changes the nature of the nine-dot problem (see Chronicle

et al., 2001). The arrows can facilitate but also distract the

problem-solving process, when participants have no idea

how the provided perceptual information interplays with

the task requirements.

There are a few aspects of our study that extend the

knowledge about the nine-dot problem, and about insight

problem solving in general. Important is the insight that a

representational change is necessary but not necessarily

sufficient for solving the problem; furthermore, while

restricting the search space in an appropriate way is

important to facilitate impasse, it is even more important

after a representational change than prior. Combining our

findings with those of relevant previous research, the model

in Fig. 5 summarizes the cognitive processes we think are

required to solve the nine-dot problem.

The model

The new aspect of our model is that we bring existing

frameworks together and explicitly test the search

dynamics before and after an impasse. The model merges

theories of search (Kaplan & Simon, 1990; MacGregor

et al., 2001) and of representational change. Ohlsson (1992;

see also Ohlsson, 1984b) had already presented the dif-

ferent stages, but provided no experimental work that tes-

ted his assumption before and after an impasse. Moreover,

a new aspect is the focus on the constraining of the search

space, relaxing constraints, and again constraining

Fig. 5 The different cognitive processes that are needed to solve the

nine-dot problem. Before an impasse, participants apply strategies

such as hill-climbing in their attempts at solving the nine-dot problem

(MacGregor et al., 2001); that is, they attempt to connect as many

dots as possible with each move. After repeatedly failing to solve the

problem using standard problem-solving heuristics the problem

solvers reach impasse, because the heuristics do not help to change

the problem representation per se as our data clearly demonstrated.

After an impasse it is crucial to have the appropriate heuristic to

restrict the now even larger search space. One has to consider that

heuristics help to navigate through a problem representation, but if the

representation is not appropriate for attaining the goal then the

heuristic is useless
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dynamics (see Fig. 1). That is, a circular restriction and

expansion dynamic that provides the search space to be

explored.

For the nine-dot problem, our model provides clarity to

the varied and sometimes inconsistent results encountered

in the literature. Of most importance here are two key

points: first, an explicit instruction to draw lines that go

beyond the perceived 3 9 3 grid (e.g. Burnham & Davis,

1969) will fail to dramatically increase solution rates

because the resulting unconstrained search space is too

large to be navigated effectively without any further hints;

second, explicitly providing non-dot locations that are not

part of the problem (i.e. as per Ormerod et al., 1997; see

Fig. 2c) will not dramatically increase solution rates

because non-dots alone are insufficient in generating a

significant increase in relaxation of the ‘‘stubborn’’

boundary constraint. By providing arrows that restrict the

direction, position and number of turns, the solution rates

increase dramatically.

Our study adds to previous evidence demonstrating that

a representational change is necessary for the solution to

the nine-dot problem (Kershaw & Ohlsson, 2004). It adds

to previous findings that a solution to the nine-dot problem

can be effectively cued through providing solution path

information together with cues that encourage people to

cross the virtual boundary of the square formed by the dots.

Importantly, the findings demonstrate that, while naviga-

tion of the problem space is important before a represen-

tational change, it is crucial after a representational change.

Although heuristics play an important role before impasse,

it is also necessary to adequately focus the search space

after the insight has occurred.

We assume that the model can be also applied to other

problems, and it should allow clear predictions as to how

the search space before and after a potential impasse can be

constrained in order to increase (1) the number of partici-

pants who encounter impasse; and (2) the number of par-

ticipants who subsequently achieve insight and find the

solution. For many insight problems, such as the eight-coin

problem (Öllinger et al. 2012; Ormerod et al. 2002),

problem solution becomes trivial once the insight has been

realized and therefore key to such problems are the pre-

impasse search heuristics and how quickly they enable

impasse to be encountered. These have already been shown

to influence impasse and subsequent solution rates for

different initial configurations of the eight-coin problem

(Ormerod et al. 2002). Of more interest are insight prob-

lems where solution to the problem is not so trivial once

insight is realized. One such example is the four-tree

problem outlined by Kershaw et al. (2013). The task is to

arrange four trees such that each tree is located equidistant

from each other. The model would predict that the problem

is difficult because the initial search space is relatively

unconstrained because there are unlimited configurations

of four objects. That is, it is unlikely or time consuming for

a problem solver to encounter impasse. A first restriction of

the initial search space as Kershaw and colleagues showed

is to provide conceptual information, e.g. the diagonal of a

square is longer than the sides of the square. As a conse-

quence, square solutions can be removed from the search

space, increasing the likelihood that a problem solver

encounters impasse. Additionally, the 3D constraint has to

be relaxed (i.e. that problem solvers can consider three

dimensions rather than two). After relaxing the 3D con-

straint a vast search space results. Thus, again, conceptual

knowledge will be required to restrict the search space (e.g.

a tetrahedron). As in the nine-dot problem, both conceptual

and 3D information both have to be taken into account in

order to successfully solve the problem.

Limitations

There are some limitations to our current study. First, the

stimuli and arrow information used may imply confound-

ing information.2 The arrows indicate not only the direction

of the solution sequence, but also that there are diagonal

lines and the position of the turns. Providing diagonal lines

can facilitate the solution as Lung and Dominowski (1985)

demonstrated. However, all experimental conditions pro-

vided the diagonal information, and the perceptual condi-

tions showed only a marginal increase of the solution rate.

Second, the arrows also provide information that turns

(particularly non-dot turns) are necessary for a solution.

Our findings point out that the arrow information was

particularly sufficient when the position of the non-dot

points was given (PAN). That is, we provided in this

condition at the same time the information of non-dot turns

and non-dot points, and that two non-dot turns are neces-

sary, a factor that plays, according to Kershaw and Ohlsson

(2004), an important role. Further work will be necessary

to disentangle these aspects.

In summary, our data provide strong evidence for mul-

tiple sources of problem difficulty supporting the findings

of Kershaw and Ohlsson (2004), illustrating that the two

key sources of difficulty in the nine-dot problem are the

problem space (the pre-insight space is too restricted, the

post-insight space becomes too large) and the required

representational change.
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