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The 8-coin insight problem requires the problem solver to move 2 coins so that each coin touches exactly
3 others. Ormerod, MacGregor, and Chronicle (2002) explained differences in task performance across
different versions of the 8-coin problem using the availability of particular moves in a 2-dimensional
search space. We explored 2 further explanations by developing 6 new versions of the 8-coin problem
in order to investigate the influence of grouping and self-imposed constraints on solutions. The results
identified 2 sources of problem difficulty: first, the necessity to overcome the constraint that a solution
can be found in 2-dimensional space and, second, the necessity to decompose perceptual groupings. A
detailed move analysis suggested that the selection of moves was driven by the established representation
rather than the application of the appropriate heuristics. Both results support the assumptions of
representational change theory (Ohlsson, 1992).
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Some problems initially appear trivial yet prove to be very
difficult and time-consuming. They often have no obvious solu-
tion, and solution strategies used in the past cannot successfully be
applied to them. Sometimes, a sudden, unintended, and unexpected
solution appears, often accompanied by an aha experience. Such
problems are termed insight problems (Dominowski & Dallob,
1995; Öllinger & Knoblich, 2009). Two different approaches
explain the dynamics of insight problem solving as an extension of
problem space theory (Newell & Simon, 1972): Ohlsson’s repre-
sentational change theory (RCT; Ohlsson, 1992) and MacGregor
and colleagues criterion for satisfactory progress theory (CSPT;
MacGregor, Ormerod, & Chronicle, 2001).

According to RCT, prior knowledge determines which problem
elements are parts of a problem representation. Perceptual pro-
cesses will group some or all of the problem elements into mean-
ingful chunks, and problem solvers will form a particular repre-
sentation of the expected goal. The goal representation constrains
the initial exploration of the problem space.

Accordingly, in Ohlsson and colleagues’ framework (Knoblich,
Ohlsson, Haider, & Rhenius, 1999; Ohlsson, 1992), chunk decom-
position and constraint relaxation are two key mechanisms for
changing an overconstrained representation and attaining insight.
Both have been addressed in earlier empirical studies. Chunk
decomposition (Knoblich et al., 1999) is a process at the interface
of perception and conception that can assign new meanings to
perceptual elements of a problem representation. Once a chunk is
decomposed, new chunks can be formed, and new solution paths
can be considered (Knoblich, Ohlsson, & Raney, 2001; Öllinger,
Jones, & Knoblich, 2006, 2008). Constraint relaxation changes the
representation of the goal of the problem-solving process. This is
needed to overcome the self-imposed constraints that prevent a
problem solver from finding the correct solution.

Whereas RCT focuses on prior knowledge, CSPT extends more
directly the assumptions of problem space theory (Newell &
Simon, 1972). The theory starts with the assumption that problem
spaces are often too large to be fully explored, and appropriate
heuristics that guide and restrict the search space are often missed
(Kaplan & Simon, 1990). CSPT proposes that the balanced inter-
play of different heuristics is a crucial component for the solution
of many insight problems.

In particular, MacGregor et al. (2001) proposed that solution of
the nine-dot problem and similar insight problems is attained by
combining a maximization heuristic (hill climbing) and a progress
monitoring heuristic. The maximization heuristic drives the selec-
tion of moves by reducing, as much as possible, the distance
between the current state and the goal state. At the same time, the
progress monitoring heuristic is used to compute the ratio between
the progress made by a selected move and the potential of the
remaining moves to attain the goal. When problem solvers use the
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two heuristics to realize that the problem cannot be solved, they
start looking for new and more promising states. Accordingly, an
insight in the solution of a problem can be driven by the realization
that still unexplored parts of a problem play a crucial role for the
solution. In general, the CSPT focuses on the search process,
whereas the RCT focuses on the initial representation that was
activated by prior knowledge.

Ormerod, MacGregor, and Chronicle (2002) provided further
evidence in support of the CSPT using the eight-coin problem. The
goal in the eight-coin problem is to find a configuration in which
each of eight coins touches exactly three other coins by moving
two coins (see Figure 1). The correct solution requires mounting
two single coins on top of two separate groups of three coins (see
Figure 1b), –that is, extending the problem space from “2-D” to
“3-D” and decomposing the given coins into two groups.

According to the CSPT, the difficulty of a problem depends on
how many moves meet a particular maximization criterion. The
maximization criterion in the eight-coin problem can be defined as
maximizing the number of coins that touch exactly three other
coins. Perceived progress toward the solution can be defined as the
number of moves that satisfy the criterion that a coin touches three
other coins (Ormerod et al., 2002, p. 793). When limited moves
satisfy such a criterion, the problem solver should quickly realize
the need to look for new avenues to explore; when many moves
satisfy the criterion, exploration of alternative moves will take
place more slowly. The problem depicted in Figure 1a does not
offer any moves within a 2-D representation that will make one
coin touch exactly three others, thus a search for promising new
states should begin quickly. The problem in Figure 1c allows such
moves. CSPT therefore predicts lower solution rates for this prob-
lem. This is exactly what Ormerod et al. (2002) found in a pilot
study, leading to further studies designed to test competing pre-
dictions of the CSPT and RCT.

The RCT assumes that either perceptual grouping factors (chunk
decomposition) and/or overcoming the 2-D constraint (constraint
relaxation) trigger a representational change that permits the solu-

tion of the eight-coin problem. Ormerod et al. (2002) ruled out this
claim: In their first experiment, a 2 � 2 design introduced prob-
lems with either tight or loose perceptual groupings (a loose
perceptual grouping being a grouping that is easily broken down
into its constituent parts, whereas a tight grouping is not), and
either 2-D criterion moves were available or not (these problems
were variants of those seen in Figure 1). Crucially, 79% of par-
ticipants in the “no criterion moves available” condition (a prob-
lem analogous to that of Figure 1a, representing early criterion
failure) solved the problem, whereas only 50% of the participants
in the “criterion moves available” condition solved the problem.
Tight or loose perceptual groupings had no influence on solution
rates.

In the second experiment, Ormerod et al. (2002) addressed
whether providing 3-D cues increased solution rates. Problems
either included a visual 3-D cue (one coin stacked vertically onto
another coin, relaxing the 2-D constraint) or not. The results
showed no influence of the visual hint; solution rates depended on
whether 2-D criterion moves were available or not.

The aim of the present study was to further clarify the influence
of grouping and 3-D cues on the solution of the eight-coin prob-
lem. Six new eight-coin problems were developed that allowed the
grouping and 3-D perceptual characteristics to be varied. Table 1
shows these problems (Problems C–H), together with the original
eight-coin problems as introduced by Ormerod and colleagues
(2002; Problems A and B).

Problem B is the only one of the eight problems that provides
available moves that meet the “three coins matching” criterion in
2-D. We operationalized the tightness of perceptual grouping as
the number of contacts between the coins of a certain problem.
That is, we vary the total number of coins that are in contact with
one another across the eight problems. This follows the same logic
as Ormerod and colleagues’ (2002) manipulation of chunk tight-
ness with the exception that their measure also included symmetry.
Additionally, we introduced three problems that relaxed the per-
ceived 3-D constraint to investigate the influence of a perceptual
3-D cue on solution rates.

Hypotheses

Problem Difficulty

RCT predicts that two factors should contribute to an overly
constrained problem representation in the eight-coin problem: first,
perceptual grouping; second, the presence of a 3-D cue. The lower
the total number of coins that touch one another (i.e., problems
having “loose” chunks), the higher the subsequent solution rates
should be for those problems compared with ones where a high
number of coins touch one another (i.e., problems having “tight”
chunks). The presence of 3-D cues should relax the constraint of
2-D representations, and hence an increase in solution rates should
be seen for the 3-D cue problems.

The CSPT predicts that Problem B will be the most difficult due
to the fact that it is the only problem that allows 2-D criterion
moves. In line with Ormerod and colleagues (2002), the CSPT
predicts no effect of 3-D cues and no differences between the
perceptual grouping variations.

Figure 1. a: Problem without criterion moves in 2-D. b: Solution of
Problem 1a. c: Problem having moves that meet the criterion, where the
white circles indicate locations where a first move can meet the criterion
(MC). d: Solution of Problem 1c.
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Table 1
Variation of Grouping and 3-D Perceptual Characteristics With Six New Eight-Coin Problems

Problem 3-D hint TNOC No. groups 2-D CM

A � 13 1 0

B � 11 1 4

C � 11 1 0

D � 10 2 0

E � 6 4 0

F � 9 1 0

G � 7 3 0

H � 7 3 0

Note. The first and second columns show the problem label and a visual depiction of the initial configuration. The dots indicate where one coin touches
another. The third column depicts whether the problem hints at a 3-D solution (�) or not (�). The fourth column shows the total number of contacts
(TNOC) between coins in the start configuration. The fifth column shows the number of separate groups of coins. The sixth column lists the number of
possible moves that meet the criterion in a 2-D representation. 3-D � three-dimensional; No. � Number of; 2-D � two-dimensional; CM � criterion move.
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Move Selection

For any particular problem, the RCT predicts that coins that are
part of loose chunks (i.e., coins that touch few other coins) will be
manipulated more often than coins that are part of tight chunks
(i.e., coins that touch many other coins) (Knoblich et al., 1999;
Öllinger et al., 2006). The RCT further predicts that providing 3-D
cues will increase the number of 3-D moves (due to relaxing the
2-D constraint). The CSPT predicts that moves will be selected
that maximize the number of coins that touch exactly three others.

Method

Participants

Two hundred twenty-four paid participants (68 men, M � 25
years, SD � 3.67) were randomly assigned to one of eight exper-
imental groups (28 participants per group).

Material

The eight different versions of the eight-coin problem shown in
Table 1 were used. The “coins” were eight circular wooden discs,
18 mm in diameter and 3 mm high.

Procedure

Participants were tested individually in a quiet room. They
received the following written instruction (in German): “Your task
is to move two coins in such a way that each coin touches exactly
three other coins.” A printed version of the initial state of the
problem was provided in addition to the wooden coins. After each
unsuccessful solution attempt, participants were asked to recreate
the start configuration, and to start with the next attempt. Partici-
pants were allowed as many attempts as they wished.

The participants’ workspace was filmed using a camera. The
camera was connected to a monitor behind a dividing wall that
shielded the experimenter from the participant. The experimenter
encoded the starting position and the target position of each move
as they were performed. This was done by clicking a mouse on the
respective locations of the problem configuration displayed on a
computer monitor. The computer recorded the start and end point
of each move.

There were no additional written or verbal hints during the
experiment. Two experimenters carried out the study. Both were
blind to the experimental design.

Results

The structure of the results section is as follows. We first
address the prediction of the CSPT that problems where criterion
moves were available will be solved less often than problems
where criterion moves were unavailable. We then examine solu-
tion rates and report an analysis of the coins that were moved in
each problem to test the predictions of the RCT for 3-D cues
(relaxing the 2-D constraint) and perceptual grouping. As the
hypotheses imply, there are at least two ways in which perceptual
grouping can be defined in eight-coin problems. One definition is
at the level of each individual coin in a problem, which we call a
local definition. For each problem, there are some coins that can be

considered to be loosely chunked and other coins that can be
considered to be tightly chunked. This is relative to other coins in
the same problem. For example, if Coin Co1 touches four others
yet Coin Co2, of the same problem, touches two others, then Coin
Co2 is more loosely chunked than Coin Co1. Our local definition
of perceptual grouping is therefore the number of contacts (NOC)
for each coin within a particular problem. A second way of
defining perceptual grouping is at the level of each problem, which
we call a global definition. Each problem may differ in the total
number of contacts between coins, with a low number of contacts
reflecting a problem that is loosely chunked and a high number of
contacts reflecting a problem that is tightly chunked. Our global
definition of perceptual grouping is therefore the total number of
contacts (TNOC) between coins in a particular problem. Note that
TNOC is a measure that reflects both local properties—how
strongly single coins are linked to their neighbors (NOC)—and
global properties, such as how many separate groups of coins a
problem consists of. In Table 1, for example, Problem A (TNOC �
13) has only one single group, whereas Problem E (TNOC � 6)
consists of four separate groups of coins. There is a high negative
significant correlation between the TNOC and the number of
groups (see Table 1), r(224) � �.88, p � .01, demonstrating that
the more separate groups a problem has, the lower the TNOC.

Criterion Moves

We compared the solution rate of Problem B (criterion moves
available in a 2-D representation) with the other 2-D problems (no
criterion moves in 2-D). As Table 2 demonstrates, none of the
pairwise chi-square test comparisons revealed a significant differ-
ence in solution rates with Problem B. That is, we could not
replicate the findings of Ormerod and colleagues (2002). The one
problem that approaches significance is Problem E. Note that
although there are no criterion moves in 2-D for Problem E, it also
has fewer contacts between coins (more loose chunks; see Table
1), predicting a greater solution rate under RCT.

3-D Cues

Figure 2 shows the mean solution rate in percent for all versions
of the eight-coin problem. The 2-D problems (A–E; see also Table
2) showed lower solution rates than 3-D problems (mean/standard
deviation for the 3-D Problems F–H. F: [0.71/0.46]; G: [0.93/
0.26]; H: [1.0/0.0]). A chi-square test between the 2-D and 3-D
problems revealed a highly significant difference, �2(1, 224) �
35.34, p � .01, � � .06, demonstrating that relaxation of the 2-D
constraint causes a significant increase in solution rates.

Table 2
Comparison of Problem B to All Other 2-D Problems

Problem A C D E

B .00 (1.00) .65 (.42) .65 (.42) 3.50 (.06)

Note. The cells show chi-square and p values (in parentheses). The
respective solution rates were as follows: Problem B: 11 out of 28 solved
the problem (mean solution rate � 0.39, SD � 0.50). A: 11/28 (M � 0.39,
SD � 0.50), C: 14/28 (M � 0.50, SD � 0.51); D: 14/28 (M � 0.50, SD �
0.51); E: 18/28 (M � 0.64, SD � 0.49).
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Perceptual Grouping

Figure 3 plots the solution rates as a function of TNOC. The
graph shows that problems having a low TNOC have higher
solution rates.

In order to test statistically whether TNOC affected solution
rates in addition to the effect of 3-D cues, we conducted a two-step
binary logistic regression (BLR; Hosmer & Lemeshow, 2000). In
particular, we used BLR to determine whether the probability of
solving eight-coin problems depended on the number of contacts
and, at the same time, on whether a 3-D cue was present or not by
estimating weights reflecting to what extent each of the two
predictors contributed to the probability that a participant belongs
to the “solver” or “nonsolver” categories. The odds ratio derived
from the model represents the probability ratio of the criterion
(P[Y � 1]/P[Y � 0]; 1 � solved; 0 � not solved) when a predictor
is changed.

We first analyzed the main effects of the predictors on solution
rates. We entered two predictor variables into the model: (a) the
discrete predictor TNOC and (b) the dichotomous predictor 3-D
cue present/not present. The reference category for the predictor
3-D cue was the category 3-D cue “not present.” A significant
effect was obtained in this analysis, �2(2, 224) � 46.07, p � .01,
with the model being able to correctly classify 68.8% of the
participants. The analysis revealed a negative influence of the
predictor TNOC (�TNOC � �.20; Z � 6.69 [Wald’s test], p �
.05). That is, a higher TNOC significantly reduced the solution rate
(see Figure 3). The odds ratio was .82.

The BLR can also further clarify the benefit of the 3-D cue.
There was a highly significant effect of 3-D cue (�3DC � 1.57;
Z � 13.84, p � .01), with an odds ratio of 4.82. The odds ratio of
4.82 means that the model predicts a change in the probability ratio
of almost five times between the odds of solving the problem when
a 3-D hint is present and the odds of solving the problem when no
such hint is present, under the assumption that no other predictor
has an influence. In a second step, we analyzed the interaction
between both predictors. The interaction model revealed a signif-
icant interaction (� � �1.04; Z � 3.48, p � .05). The percentage
of correctly classified participants did not change after adding the

interaction term (68.8%). Because the model did not improve, we
do not interpret the interaction further.

Move Analysis

We conducted the move analysis in two steps. First, following
Ormerod et al. (2002), we examined the first move of each solution
attempt by determining the preferred start and end positions of a
move. Any initial move that formed part of the final solution was
excluded. The goal was to identify whether the number of criterion
moves available affected which coin was selected for the initial
move and to identify whether the presence of loose chunks af-
fected which coin was selected for the initial move. Second, we
examined all moves that involved stacking one coin on top of
another in order to identify whether the presence of a 3-D cue
influenced the selection of moves that involved 3-D space rather
than 2-D space. Figure 4 shows the frequency by which each coin
was selected to be the first move, together with any end positions
that were selected as an ending point of a move significantly more
often than chance.

Criterion Moves

There is one aspect of Figure 4 that clearly illustrates how
participants search for moves that satisfy the criterion: All of the
end positions of the first move in Problem B result in the moved
coin touching three and only three others. In this respect, the CSPT
is supported—although as we have seen earlier, the prediction that
all other problems would be of equal difficulty (because none offer
2-D criterion moves) was not borne out. This implies that although
the number of criterion moves available affect problem behavior,
participants were able to quickly recover because the solution rates
to Problem B were no different from those for Problems A, C, D,
and E.

Perceptual Grouping

With regard to the RCT, Figure 4 indicates that participants
preferred to move coins that were part of loose chunks—and

Figure 2. Mean solution rates for all problems. Two-D versions bars are
gray; 3-D versions bars are black. The dashed line indicates the perfor-
mance of Problem B as baseline.

Figure 3. Solution rate as a function of the total number of contacts
separated for 2-D (gray bars) and 3-D versions (black bars). The letters on
the x-axis indicate the problem versions.
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particularly those coins that were isolated (Problems E, G, and H).
In order to verify this statistically, we first grouped coins together
according to the factor NOC. For each problem, we determined the
NOC for each individual coin. As Table 3 shows, the NOC for
coins varied from 0 to 4. Within each problem, coins with the
lowest NOC were considered to be part of loose chunks and coins
with the highest NOC to be part of tight chunks (i.e., we ignored
intermediate chunks, because not all problems had intermediate
chunks). For example, coins in Problem A touched two, three, or
four other coins. Coins touching two others were therefore con-
sidered to be part of a loose chunk, and coins touching four others
were part of a tight chunk. For Problem E, however, coins either
touched zero other coins or touched two other coins. Coins touch-
ing zero others were therefore considered loose chunks for this

problem, and coins touching two others were considered tight
chunks. Second, we computed the dependent variable as the mean
frequency of selection for coins at each NOC. For example, if a
problem had three coins having NOC � 2, and the number of times
those coins were selected as the first move was six, then a coin
with NOC � 2 was selected, on average, two times (see Table 3).

The analyses included only participants who selected both loose
and tight chunks. A repeated measures analysis of variance
(ANOVA) with the factor Chunk (loose, tight) revealed a highly
significant effect, F(1, 177) � 93.32, 	p

2 � .34, p � .01 (mean
number of times a coin involved in a loose chunk was selected �
1.84; SD � 1.83; for tight chunks, M � 0.54, SD � 0.69). Table
3 shows the differences between loose and tight chunks for each
problem.

The Mean column of Table 3 indicates that, in general, the NOC
influences the frequency of coin selection. A regression analysis
with the predictor NOC (0, 1, 2, 3, 4) and the criterion weighted
mean number of selected coins (see Table 3) showed a negative
but significant influence of NOC (� � �.38), t(451) � 6.20, p �
.01, and explained a significant amount of the variance (R2 � .08),
F(1, 451) � 38.39, p � .01, showing that, in general, participants
preferred moving coins with fewer contacts.

Finally, it is possible that the effect of NOC is not due to the
NOC between coins but is driven by more general perceptual
grouping aspects. In particular, Problems E, G, and H all include
isolated groups of coins that might drive move selection. To ensure
this was not the case, we confirmed that a strong effect of NOC
exists even when Problems E, G, and H are excluded from the
analysis, F(1, 124) � 59.60, p � .01, 	p

2 � .33. That is, even when
problems with isolated coins are removed from the analysis, there
is still a higher likelihood to manipulate loose chunks than tight
ones.

3-D Moves

We analyzed whether providing a 3-D cue increases the prob-
ability of moving coins to “3-D” positions. In total, 159 of 224
participants applied 3-D moves. Out of the 159 participants, 142
(89%) solved the problem. To assess the influence of 3-D cues on
the selection of 3-D moves, we created two groups by pooling and
then averaging the 3-D move data of Problems F, G, and H in the
3-D cue present category and the 3-D move data of the remaining
five problems (A, B, C, D, and E) in the 3-D cue not present
category (see Figure 5).1 We conducted a one-way ANOVA with
the factor 3-D Cues (present, not present). The analysis revealed a
highly significant main effect, F(1, 222) � 50.87, p � .01, 	p

2 �
.19, showing that presenting 3-D cues significantly increased the
number of selected 3-D moves.

Eight of the 10 participants who failed to solve a 3-D problem
belonged to Problem F, which has a tighter perceptual grouping of
the eight coins compared with Problems G and H (TNOC � 9 for
Problem F; TNOC � 7 for Problems G and H). A chi-square test

1 For the 3-D cue problems, one may expect the lowest number of 3-D
moves to appear in Problem F (because this problem has the least number
of solvers of Problems F, G, and H). However, as Figure 4 shows, a large
number of moves in Problem G involved closing the existing gap in a 2-D
representation, thus driving down the number of 3-D moves that people
make for this problem.

Figure 4. Percentage of all start positions (filled circles) and those end
positions that were chosen significantly above chance (unfilled circles). For
the start position, 12.5% was set as the test value because this is the chance
probability of selecting one of the eight coins; one-sample t tests were
conducted. Significant values below 12.5% indicate that coins were se-
lected significantly less often than expected. The number of end positions
was determined empirically for each problem by counting the number of
each position (NP) that at least one participant had chosen. The baseline
was computed by 1/NP. � p � .05. �� p � .01.
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comparing Problem F (solvers � 20/28; M � 0.71, SD � 0.46)
with Problems G and H (solvers � 56/58; M � 0.97, SD � 0.13)
revealed a highly significant difference, �2(1, 84) � 11.12, p �
.01, � � .16, demonstrating that in Problem F, fewer participants
benefited from the 3-D cue than in Problems G and H. One point
of note is that Problem F differs from Problems G and H by virtue
of having all coins as one group rather than two or more groups
(see the NOC column in Table 3). It is possible that this was the
cause of the statistical effects seen. However, one should also note
that the number of separate groups of coins is reflected in the
TNOC variable. Problems that have two or more separate groups
of coins will have a lower TNOC by definition and will therefore
comprise a greater number of loose chunks. This is suggested in
the tendency of higher solution rates for non-3-D-cue problems
that have two or more separate groups of coins (Problems D and E)
as opposed to those that do not (Problems A, B, and C). In the 3-D
cue problems, an interaction between perceptual grouping and 3-D
cues exists whereby 3-D cues are more effective when the chunks
are loose rather than tight.

Discussion

In the present study, we scrutinized the influence of perceptual
grouping and 3-D cues on the solution of the eight-coin problem.
The goal was to clarify the main sources of problem difficulty. The
results demonstrated that irrespective of whether or not 2-D crite-
rion moves were available (Problem B), move selection and prob-

lem difficulty were primarily determined both by perceptual
grouping effects (tight vs. loose chunks) and by self-imposed
constraints (2-D constraint).

For 3-D cues, the results clearly showed that the presence of a
3-D cue significantly increased solution rates. We also showed that
the presence of the 3-D cue increased the likelihood of attempting
moves that stacked coins on top of one another (causing higher
solution rates). For perceptual grouping, we showed that coins that
were part of loose chunks had a much higher likelihood of being
manipulated than coins that were part of tight chunks. Loose
chunks also facilitated the solution of the 3-D cue problems, with
higher solution rates for 3-D problems that had a low TNOC.
These findings are in accordance with the assumptions of the RCT.

The fact that 3-D cue problems were easier to solve than
non-3-D-cue problems conflicts with the results of Ormerod and
colleagues (2002), who found little influence of their visual 3-D
hint. One crucial difference between the 3-D cues that were given
in the present study and the 3-D cues that were given by Ormerod
and colleagues is that our 3-D cue showed coins overlapping with
each other, whereas Ormerod and colleagues showed coins that
were “flush” with each other. It could therefore be argued that our
3-D cue provides additional information to that of Ormerod and
colleagues, in that the solution to the problem involves stacking
coins on top of each other such that they only overlap with each
other. First, it might be the case that overlapping coins have higher
affordances to be manipulated, due to a looser chunking with the

Figure 5. Mean number of moves that end at a 3-D position, with standard error bars.

Table 3
Weighted Mean Number of Selected Coins That Have Zero to Four Contacts

NOC A B C D E F G H M

0 — — — — 2.69�� — — .82� 1.75
1 — — — — — 2.38�� 1.21�� .64 1.41
2 1.96�� 1.13�� 2.39�� 1.45�� .73 .71 .27 .15 1.10
3 .61 1.56 .59 .49 — .21 — 0 0.58
4 1.21 .31 — — — — — — 0.76

Note. For each single problem, paired sample t tests were conducted between the loose and the tight chunk
conditions. The italicized cells indicate loose chunks; the boldface cells indicate tight chunks. NOC � number
of contacts. Dashes indicate no coins with this number of contacts.
� p � .05. �� p � .01.
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other coins. Figure 4 demonstrates that there is a strong preference
to manipulate these particular coins. Second, it might also be that
overlapping coins trigger a clearer goal representation where the
participant realizes that coins need to be overlapping with other
coins, as required in the solution; that is, the coin at the top
overlaps with three other coins (see Figure 6). This would be an
additional source of problem difficulty that was not explicitly
addressed in our study and requires further empirical work.

One additional difference across the studies was the use of
“coins” (present study) versus hexagonal shapes (Ormerod et al.,
2002, study). We would not expect this to be the root cause of
differences in performance across 3-D cues. A further examination
of the precise aspects of 3-D cues that cause facilitation versus
those that do not is therefore warranted.

Our data also showed the role that perceptual grouping plays in
insight problem solving. Even for the 3-D cue problems, which
were solved quite often, perceptual grouping was still an additional
source of problem difficulty, over and above the influence of 3-D
cues. Consequently, tight perceptual groupings are an additional
source of problem difficulty that hinders the stacking of coins,
which are required by the proper solution of the problem. We can
therefore suggest that the primary source of difficulty in the
eight-coin problem is the self-imposed 2-D constraint, with the
decomposition of tight chunks being a secondary source of diffi-
culty that further impeded the solution.

The detailed move analysis showed that, as predicted by the
CSPT, participants preferred target positions where a coin touches
exactly three others (Problem B, see Figure 4). However, the
presence of criterion moves did not cause a reduction in solution
rates when compared with problems that did not have any criterion
moves available (comparison of Problems A and B in Table 1).
Thus, we did not replicate the findings of Ormerod and colleagues’
(2002) pilot study that was based on 12 participants in each
condition. Given that we used 28 participants per condition in the
present study, it would seem that our design provided enough
power for a replication. Importantly, our participants’ strong pref-
erence for initial moves that met the “three coins touching” crite-
rion for Problem B (see Figure 4) did not affect their ability to
solve the problem any differently than if they were to solve
problems without any criterion moves. Thus, criterion moves were
not a factor in the present experiment.

Previous research has suggested that the CSPT may describe the
chain of events that occur before a representational change occurs
(Jones, 2003; MacGregor et al., 2001; Öllinger et al., 2006). This
questions whether the CSPT and the RCT are competing theories
or, rather, explaining different phases of the solution process of the
eight-coin problem. The CSPT proposes that the search through

the problem space is biased toward moves that progress the prob-
lem solver the furthest toward his or her goal (i.e., a hill-climbing
approach), which leads to failure for insight problems. The RCT
proposes that the initial problem space is underrepresented (due to
constraints or chunked knowledge) such that the solution to the
problem is not a part of the initial problem space. The present data
suggest that the RCT alone can explain the difficulty of the
eight-coin problem. The effect of the hill-climbing approach sub-
scribed to by the CSPT causes minimal disruption to the insight
process in this problem. An additional look at the initial move
analysis for Problem B in Figure 4 shows that the end position of
moves results in a coin touching three others; however, although
participants selected end positions that met the criterion for Prob-
lem B, they also chose to manipulate coins that already met three
other coins (see Table 3). Thus, participants tried to close percep-
tual gaps rather than apply a maximization and progress monitor-
ing heuristic. It should be noted, however, that in other problems
such as the nine-dot problem, CSPT explains important sources of
problems difficulty (Kershaw & Ohlsson, 2004; MacGregor et al.,
2001).

In conclusion, we have shown how the 8-coin insight problem
can be modified in order to test competing predictions from the
CSPT and the RCT. Our data clearly show how constraints are
placed on the problem (working in a 2-D space) and how percep-
tual groupings (tight vs. loose chunks) affect the insight problem-
solving process. Within the eight-coin domain, it was clear that the
largest obstacle in problem solution was that of constraining one-
self to working in only two dimensions, closely followed by that of
perceptual groupings. Working to a criterion of satisfactory prog-
ress, as per the CSPT, had minimal effects on the solution process.
The RCT provides a solid explanation for performance in 8-coin
problems across a range of different initial states of the problem.
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